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Abstract

This appendix provides additional details on proof of identification, priors, the

posterior sampler, marginal likelihood estimation, simulation results and data.
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1 Proof of Propositions

1.1 Proof of Proposition 1

Proof of Proposition 1 : Without the loss of generality, we prove one of the two cases in

Proposition 1. That is, we assume Var(ut) = Ip1p2 and A is a lower-triangular matrix

with ones on the diagonal, while B is a lower-triangular matrix with strictly positive

diagonal elements.

As shown in (1.1), we may identify a rotation of Ft, given by CFtD
′.

Yt = AC−1CFtD
′(D′)−1B′ + Et, (1.1)

where C and D are p1 × p1 and p2 × p2 invertible matrices.

We use F̃t to denote the rotated factor matrix: F̃t ≡ CFtD
′, and we use f̃t to denote the

vectorized Ft: f̃t ≡ (D⊗C)ft.

Let

A =



1 0 ... 0

a21 1 ... 0
...

...
. . .

...

ap11 ap12 ... 1
...

...
. . .

...

an1 an2 ... anp1


,C−1 =


c11 ... c1p1
...

. . .
...

cp11 ... cp1p1



Then the rotated factor loadings AC−1 needs to be a lower triangular matrix with ones

on the diagonal as well, that is,

1 0 ... 0

a21 1 ... 0
...

...
. . .

...

ap11 ap12 ... 1
...

...
. . .

...

an1 an2 ... anp1




c11 ... c1p1
...

. . .
...

cp11 ... cp1p1

 =



1 0 ... 0

a∗21 1 ... 0
...

...
. . .

...

a∗p11 a∗p12 ... 1
...

...
. . .

...

a∗n1 a∗n2 ... a∗np1


(1.2)
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For (1.2) to hold, we must have ci,j = 0 for any i, j such that i < j and ci,i = 1, or C−1

is lower triangular with ones on the diagonal.

Similarly, 

b11 0 ... 0

b21 b22 ... 0
...

...
. . .

...

bp21 bp22 ... bp2p2
...

...
. . .

...

bn1 bn2 ... bnp2




d11 ... d1p2
...

. . .
...

dp21 ... dp2p2

 =



b∗11 0 ... 0

b∗21 b∗22 ... 0
...

...
. . .

...

b∗p11 b∗p12 ... b∗p2p2
...

...
. . .

...

b∗n1 b∗n2 ... b∗np2


(1.3)

For (1.3) to hold, we must have dij = 0 for any i, j such that i < j, or D−1 is lower

triangular given the assumption that bii ̸= 0, b∗ii ̸= 0, for i = 1, ..., p2.

Define ft ≡ vec(Ft). Consider the case q = 1, we rewrite (2) as follows

ft = Hρft−1 + ut, (1.4)

where Hρ is a diagonal matrix with ρ = (ρ1,1,t, ..., ρp1,p2,t)
′ on the diagonal. ut =

(u1,1,t, ..., up1,p2,t)
′, ut ∼ N (0,Λt), where Λ1 = diag(λ21,1/(1 − ρ21,1), ..., λ

2
p1,p2

/(1 − ρ2p1,p2))

for t = 1, and Λt = diag(λ21,1, ..., λ
2
p1,p2

) for t = 2, ..., T .

Define M ≡ D⊗C, multiply (1.4) by M on both side, we have

Mft = MHρft−1 +Mut. (1.5)

Therefore

f̃t = MHρM
−1f̃t−1 +Mut. (1.6)

The observation equation after the rotation becomes

Yt = AC−1F̃t(D
′)−1B′ + Et. (1.7)

Given the condition that Var(ut) = Ip1p2 , Var(Mut) should be an identity matrix as well.

4



That is, MVar(ut)M
′ = Ip1p2 . Therefore, we have MM′ = Ip1p2 . Or M is an orthogonal

matrix. Therefore, we have

MM′ = I ⇔ (D⊗C)(D⊗C)′ = I ⇔ (DD′)⊗ (CC′) = I,

which holds if and only if DD′ = Ip2 and CC′ = Ip1 , given that C and D are lower

triangular matrices and the diagonal elements of C is ones.

This means that C and D are orthogonal matrices. An orthogonal matrix that is lower

triangular must be diagonal. Therefore, the rotation matrix C is an identity matrix.

Given that bii > 0 for i = 1, ..., p2, we must have that the rotation matrix D is also an

identity matrix.

This proves that the proposed assumptions in MDFM1 fully identify the factor matrix

and the factor loading matrices.

1.2 Proof of Proposition 2

Proof of Proposition 2 : Similar to the proof of proposition 1, the rotated factor loadings

C−1 needs to be a lower triangular matrix, as shown in (1.2). Additionally, given we have

ones on the diagonal of A, C−1 needs to have ones on its diagonal as well. Similarly, D−1

needs to be a lower triangular matrix with ones on its diagonal. Therefore, the matrix

M is a lower triangular matrix with ones on its diagonal.

Again, we need Cov(Mut) = Cov(ut), i.e., MΛtM
′ = Λt, where Λt is a diagonal matrix.

Given that the diagonal elements in Λt must be larger than 0, this requires that mi,j for

all i > j must be zero, for MΛtM
′ to only have non-zero terms on its diagonal and match

Λt. Therefore, M must be identity matrix.

This proves that assumptions 1, 4 and 5 fully identifies the factor matrix and the factor

loading matrices.

5



2 Bayesian Estimation for MDFM with Stochastic

Volatility

Recall the dynamic factor model for matrix-valued time series with stochastic volatility

Yt = AFtB
′ + Et, vec(Et) ∼ N (0, ωtΣc ⊗Σr), (2.8)

vec(Ft) = Hρ1vec(Ft−1) + . . .+Hρqvec(Ft−q) + ut, ut ∼ N (0,Λt), (2.9)

where A is a n× p1 matrix of factor loadings, B is a k× p2 matrix of factor loadings, Ft

is a p1×p2 latent matrix-valued time series of common factors, Et is a n×k idiosyncratic

component, vec( · ) is a vectorizing function, Hρl
is a diagonal matrix of autoregressive

coefficients (ρ1,l, . . . , ρp1p2,l)
′, l = 1, . . . , q, and Λt is a covariance matrix for the error in

factor evolution process.

We use a natural conjugate prior for the transpose of factor loadings: A′ and B′. In

addition, we use inverse-Wishart prior for Σr and Σc:

Σr ∼ IW(νr,Sr), (vec(A′)|Σr) ∼ N (vec(A′
0),Σr ⊗VA′),

Σc ∼ IW(νc,Sc), (vec(B′)|Σc) ∼ N (vec(B′
0),Σc ⊗VB′).

(2.10)

The autoregressive coefficient ρj,k,l is assumed to have a truncated normal prior on the

interval (−1, 1):

ρj,k,l ∼ T N (ρj,k,l,0, Vρj,k,l), j = 1, ..., p1, k = 1, ..., p2, l = 1, . . . , q.

The prior variance λ2j,k is assumed to have a inverse-gamma prior: IG(νλj,k
, Sλj,k

). We

also treat the first q factors as unknown, and use the following prior

fj,k,l ∼ N

(
0,

λ2j,k
1−

∑q
m=1 ρ

2
j,k,m

)
, l = 1, . . . , q.

For identification, we use assumptions 1, 4 and 5. We employ Markov Chain Monte

Carlo (MCMC) methods to obtain a draw from the joint posterior of the latent factors

and parameters of the model. Specifically, the following steps are carried out:
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1. Sampling from (A′,Σr|Y,B,F,Σc)

We sample (A′,Σr) conditional on the latent factors and other parameters from a normal-

inverse-Wishart distribution:

(A′,Σr| · ) ∼ NIW(Â′,K−1
A′ , ν̂r, Ŝr),

where

KA′ = V−1
A′ +

T∑
t=1

ω−1
t FtB

′Σ−1
c BF′

t, Â′ = K−1
A′

(
V−1

A′A
′
0 +

T∑
t=1

ω−1
t FtB

′Σ−1
c Y′

t

)

ν̂r = νr + Tk, Ŝr = Sr +A0V
−1
A′A

′
0 +

T∑
t=1

ω−1
t YtΣ

−1
c Y′

t − ÂKA′Â′.

With the constraints for identification, we cannot directly sample from the above normal-

inverse-Wishart distribution. Here we outline the sampling scheme for A′ with the struc-

ture constraints. To that end, we first represent the restrictions as a system of linear

restrictions. For example, for A′, we represent the restrictions that A is a lower tri-

angular matrix with ones on the diagonal using MA′vec(A′) = a0. Assuming n > p1,

MA′ = (mi,j) is a p1(p1 +1)/2× np1 selection matrix, and a0 is a p1(p1 +1)/2× 1 vector

consisting of ones and zeros. Then we apply Algorithm 2 in Cong et al. (2004) or Algo-

rithm 1 in Chan and Qi (2024) to efficiently sample (vec(A′)| · ) ∼ N (vec(Â′),Σr⊗K−1
A′ )

such that MA′vec(A′) = a0. In particular, one can first sample vec(A′
u) from the uncon-

strained conditional posterior distribution in Step 1, and then return

vec(A′) = vec(A′
u) + (Σr ⊗K−1

A′ )M
′
A′

(
MA′(Σr ⊗K−1

A′ )M
′
A′

)−1
(a0 −MA′vec(A′

u)),

which can be realized by the following four steps:

(1) Compute C = CΣ−1
r

⊗CKA′ , where CΣ−1
r

is the lower Cholesky factor of Σ−1
r , and

CKA′ is the lower Cholesky factor of KA′ ;

(2) Solve CC′U = M′
A′ for U;

(3) Solve MA′UV = U′ for V;

(4) Return vec(A′) = vec(A′
u) +V′(a0 −MA′vec(A′

u)).

2. Sampling from (B′,Σc|Y,A,F,Σr)
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Similar to step 1, (B,Σc) are drawn from a normal-inverse-Wishart distribution:

(B,Σc| · )NIW(B̂′,K−1
B′ , ν̂c, Ŝc),

where

KB′ = V−1
B′ +

T∑
t=1

ω−1
t F′

tA
′Σ−1

r AFt, B̂′ = K−1
B′

(
V−1

B′ B
′
0 +

T∑
t=1

ω−1
t F′

tA
′Σ−1

r Yt

)

ν̂c = νc + Tn, Ŝc = Sc +B0V
−1
B′ B

′
0 +

T∑
t=1

ω−1
t Y′

tΣ
−1
r Yt − B̂KB′B̂′.

We sample (B,Σc| · ) in two steps. First, we sampleΣc marginally from (Σc|Y,A,F,Σr) ∼
IW(Ŝc, νc+Tn) with the normalization restriction that σc,1,1 = 1. This can be done using

the algorithm in Nobile (2000) described below. Then we simulate (vec(B′)|Y,A,F,Σr,Σc) ∼
N (vec(B̂),Σc ⊗K−1

B′ ), which can be done using the algorithm described in step 1.

The algorithm in Nobile (2000) can be realized by the following steps:

(1) Exchange row/column 1 and n in the matrix Ŝc. Denote this matrix as ŜTrans
c .

(2) Construct a lower triangular matrix ∆ such that

• δii equal to the square root of χ2
ν̂c+1−i for i = 1, . . . , n− 1;

• δnn = (lnn)
−1, where lnn is the (n, n)-th element in the Cholesky decomposition

of (ŜTrans
c )−1, denoted as L

• δij equal to N (0, 1) random variates, i > j.

(3) Set Σc = (L−1)′(∆−1)′∆−1L−1.

(4) Exchange the row/column 1 and n of Σc back.

3. Sampling from (vec(Ft)|Yt,A,B,Σr,Σc,ω
2,ρ), t = 1, . . . , T

We sample the factors by t. Specifically, conditional on parameters, vec(Ft) from a normal

distribution:

(vec(Ft)| · ) ∼ N (f̂t,K
−1
ft
),

where

Kft = ω−1
t B′Σ−1

c B⊗A′Σ−1
r A+Λ−1, f̂t = K−1

ft

[
ω−1
t (B′Σ−1

c ⊗A′Σ−1
r )vec(Yt) +Λ−1Hρft−1

]
.
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Step 4. Sampling from (λ2j,k|fj,k,ρj,k), j = 1, ..., p1, k = 1, ..., p2

It is clear that (λ2j,k|fj,k,ρj,k) ∼ IG(ν̂λj,k
, Ŝλj,k

), where ν̂λj,k
= νλj,k

+ T
2
, and Ŝλj,k

=

Sλj,k
+ 1

2

[∑q
t=1 f

2
j,k,t(1−

∑
m ρ

2
j,k,m) +

∑T
t=q+1(fj,k,t − ρj,k,1fj,k,t−1 − ...− ρj,k,qfj,k,q)

2
]
.

Step 5. Sampling from (ρj,k|fj,k, λ2j,k), j = 1, ..., p1, k = 1, ..., p2

Note that ρj,k is a q × 1 vector: ρj,k = (ρj,k,1, . . . , ρj,k,q)
′. We rewrite (2) as follows:

f̃j,k = F̃j,kρj,k + uj,k, uj,k ∼ N (0, λj,kIT−q), (2.11)

where f̃j,k = (fj,k,q+1, . . . , fj,k,T )
′, and

F̃j,k =


fj,k,1 fj,k,2 · · · fj,k,q

fj,k,2 fj,k,3 · · · fj,k,q+1

... · · · · · · ...

fj,k,T−q fj,k,T−q+1 · · · fj,k,T

 .

Following Chib and Greenberg (1994) and Chan and Jeliazkov (2009), we design an

Metropolis-Hastings algorithm with proposal ρ∗
j,k ∼ N (ρ̂j,k,K

−1
ρj,k

), where Kρj,k
= V−1

ρj,k
+

F̃′
j,kF̃j,k/λ

2
j,k, ρ̂j,k = K−1

ρj,k
(V−1

ρj,k
ρj,k,0 + F̃′

j,k f̃j,k/λ
2
j,k). The proposed value ρ∗

j,k is accepted

with probablity

αMH(ρj,k,ρ
∗
j,k) = min

{
1,
fN (fj,k,1:q|0, λ2j,k/(1−

∑
m ρ

∗2
j,k,m)Iq)

fN (fj,k,1:q|0, λ2j,k/(1−
∑

m ρ
2
j,k,m)Iq)

}
.

5. Sampling the time-varying volatility

For clearer illustration, assume that we have only one type of time-varying volatility. The

following three steps correspond to each type.

5.1 Common stochastic volatility: sampling from (h|Y,A,F,B,Σc,Σr)

The conditional posterior for h is not a standard distribution. In this paper, we follow

Chan (2017) for this purpose. In particular, we first obtain the mode of the log density

of (h| · ) as well as the negative Hessian evaluated at the mode, denoted as ĥ and Kh,

respectively. Then we use N (ĥ,K−1
h ) as the proposal distribution, and sample h using an

acceptance-rejection Metropolis-Hasting step. Samplers for ϕ and σ2
h are standard and

we omit the details in this paper.
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5.2 The explicit outlier components: sampling from (o, po|Y,A,F,B,Σc,Σr)

We follow Stock and Watson (2016) to discretize the support of ot to simplify estimation.

Specifically, we use a grid with points at 1, 2, 3, ..., 20. The likelihood can be easily evalu-

ated at these grid points. Finally, a draw from the full conditional posterior distribution

of ot can be obtained using the inverse transform method.

The conditional distribution of poi is a Beta distribution:

(poi |oi) ∼ B(apoi + n2, bpoi + n1),

where n1 =
∑T

t=1 I(oi,t = 1) is the number of “regular” periods, and n2 = T−
∑T

t=1 I(oi,t =

1) is the number of “outlier” periods.

5.3 Fat-tailed innovations: sampling from (q2t |Y,A,F,B,Σc,Σr), t = 1, . . . , T

Conditional on the factors and parameters, the posterior for q2t has an inverse-gamma

distribution:

(q2t | · ) ∼ IG((nk + l)/2, (s2t + l)/2),

where s2t = tr [Σ−1
c (Yt −AFtB)′Σ−1

r (Yt −AFtB)].
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3 Estimating Marginal Likelihoods

This section describes the method we use to obtain integrated likelihood and the

importance-sampling densities. For illustration, we consider q = 1.

3.1 Integrated Likelihood

Model (1)(2) can be rewritten as follows

yt = (B⊗A)ft + εt, εt ∼ N (0,Σc ⊗Σr),

f |ρ,Ω ∼ N
(
0,
[
H′

ρ(IT ⊗Ω)−1Hρ

]−1
)
,

(3.12)

System (3.12) can be rewritten as follows

y = (IT ⊗A⊗B)f + ε, ε ∼ N (0, IT ⊗ (Σc ⊗Σr)),

f |ρ,Ω ∼ N
(
0,
[
H′

ρ(IT ⊗Ω)−1Hρ

]−1
)
.

(3.13)

It is easy to integrate out f and we can get the following likelihood

y|A,B,Σc,Σr,Ω,ρ ∼ N (y,Dy), (3.14)

where
y = E [E (y|f ,A,B,Σc,Σr,Ω,ρ) |A,B,Σc,Σr,Ω,ρ]

= E [(IT ⊗B⊗A)f |A,B,Σc,Σr,Ω,ρ]

= (IT ⊗B⊗A)E[f |A,B,Σc,Σr,Ω,ρ]

= 0,

and

Dy = E {[Var (y|f ,A,B,Σc,Σr,Ω,ρ) | · }+Var (E[y|f ,A,B,Σc,Σr,Ω]| · )]

= IT ⊗Σc ⊗Σr + (IT ⊗B⊗A)[H′
ρ(IT ⊗Ω)−1Hρ]

−1(IT ⊗B′ ⊗A′).
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It can be very costly to compute the inverse of the covariance matrix Dy. Therefore,

here we use Kalman filter. In particular, it is not difficult to show that the marginal

distribution for ft ≡ vec(Ft) is as follows:

(f1 | ρ,λ) ∼ N (0,Λ1)

(ft | ρ,λ) ∼ N (0,Λt +HρΛt−1H
′
ρ), t = 2, . . . , T,

where for t = 2, . . . , T , Λt = diag(λ21,1, λ
2
2,1, ..., λ

2
p1,p2

), and for t = 1, Λ1 = diag(λ21,1/(1−
ρ21,1), λ

2
2,1/(1− ρ22,1), ..., λ

2
p1,p2

/(1− ρ2p1,p2)). Hρ = diag(ρ1,1, ρ2,1, ..., ρp1,p2)

Therefore, the integrated likelihood at time t is:

(yt |A,B,Σc,Σr) ∼ N (0,Dyt),

where

Dy1 = Σc ⊗Σr + (B⊗A)Λ1(B
′ ⊗A′)

Dyt = Σc ⊗Σr + (B⊗A)(Λt +HρΛt−1H
′
ρ)(B

′ ⊗A′), t = 2, . . . , T.

3.2 Finding the Optimal Importance-sampling Densities

The next step is to find the maximum likelihood estimators for the hyperparameters in

the importance-sampling density. The importance-sampling density is denoted as

f(θ;v) = f(A,Σ,Ω,ρ;v)

= f(A;A,DA) · f(Σc; Ψc, νc) · f(Σr; Ψr, νr) · f(λ; νλ, Sλ) · f(ρ;ρ,Dρ).
(3.15)

In terms of the parameteric family, we use Gaussian density for f(A;A,DA), where

A and D are the corresponding mean and covariance matrix. We use inverse Wishart

densities for f(Σc; νc,Ψc) as well as f(Σr; νr,Ψr). We use inverse gamma density for We

use the truncated normal density on the interval (−1, 1) for f(ρ;ρ,Dρ), where ρ and Dρ

are the corresponding mean and covariance matrix. we use inverse-gamma distribution

for f(λ; νλ, Sλ).

In order to obtain the maximum likelihood estimators for the parameters in inverse
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Wishart distribution, we first use maximum likelihood estimation on the Wishart dis-

tribution given the posterior samples, and then compute the degree of freedom and scale

matrix of the inverse Wishart distribution using Lemma 1.

Lemma 1 : Σ follows an inverse Wishart distribution if K ≡ Σ−1 follows a Wishart

distribution, formally expressed as

Σ ∼ IWd(δ − d+ 1,Ψ−1) ⇔ K = Σ−1 ∼ Wd(δ,Ψ), (3.16)

where d is the dimension of the matrix Σ, δ is the degree of freedom of the Wishart

distribution, and Ψ is the scale matrix.

A Wishart distribution is defined as:

f(K|Ψ, δ) = |K| δ−d−1
2

2
δd
2 |Ψ| δ2Γd

(
δ
2

) exp{−1

2
tr(KΨ−1)

}
.

We assume that each matrix is drawn independently from the same Wishart distribution

W(Ψ, δ). Therefore, we can model the joint distribution as:

f(K1, ...,KM |Ψ, δ) =
M∏

m=1

|Km|
δ−d−1

2

2
δd
2 |Ψ| δ2Γd

(
δ
2

) exp{−1

2
tr(KmΨ

−1)

}
.

The log-likelihood function is therefore

log f(K1, ...,KM |Ψ, δ) =− δdM

2
log 2− δM

2
log |Ψ| −M log Γd

(
δ

2

)
+

δ − d− 1

2

M∑
m=1

log |Km| −
1

2
tr

(
M∑

m=1

KmΨ
−1

)
.

The first derivative of the log-likelihood function with respect to the scale matrix Ψ is

equal to

d log(f(K1, ...,KM |Ψ, δ))
dΨ

= −Mδ

2
Ψ−1 +

1

2
Ψ−1

M∑
m=1

KmΨ
−1, (3.17)

where two results are used
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1. ∂|X|
∂X

= |X|X−1;

2. ∂tr(AX−1)
∂X

= −X−1AX−1.

From equation (3.17) we obtain a function of the MLE of Ψ with respect to the degree

of freedom δ

Ψ̂mle =
1

Mδ

M∑
m=1

Km. (3.18)

In order to obtain the MLE for the degree of freedom, a straightforward way is to find the

first order condition and second order condition to maximize the log-likelihood function

with respect to δ. We then use the Newton-type methods to find the estimate for δ̂.

In particular, the first derivative of the log-likelihood function after we plug in (3.18) is

∂ log f(K1, ...,KM |δ)
∂δ

=− dM

2
(log 2 + 1) +

Md

2
log δ − M

2
log

∣∣∣∣∣M−1
∑
m

Km

∣∣∣∣∣
− M

2
ψd

(
δ

2

)
+

1

2

∑
m

log |Km|.
(3.19)

The second derivative is

∂2 log f(K1, ...,KM |δ)
∂δ2

= −Md

2δ
− M

4
ψ

(2)
d

(
1

2
δ

)
.

Maximum likelihood estimators for parameters for normal distributions and inverse

gamma distributions are straightforward to obtain so that we omit the details here.
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4 Additional Simulation Results

Table 4.1: Adjusted R2 from regressing the true factors on the estimates: p1 = 3, p2 = 2

(n, k) T = 200 T = 500 T = 1000

0.98 0.98 0.99 0.97 0.98 0.99

0.98 0.96 0.98 0.98 0.98 0.99(10, 10)

0.96 0.96 0.99 0.99 0.98 0.99

Average 0.97 0.98 0.98

1.00 0.98 1.00 0.99 1.00 0.99

0.97 0.98 0.99 0.98 1.00 0.99(20, 15)

0.99 0.99 0.99 0.97 0.98 0.98

Average 0.98 0.99 0.99

1.00 0.98 1.00 1.00 1.00 0.99

0.99 0.98 0.99 0.99 0.99 0.99(30, 20)

0.99 0.98 0.98 0.98 0.99 0.99

Average 0.99 0.99 0.99
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Table 4.2: Adjusted R2 from regressing the true factors on the estimates: p1 = 5, p2 = 5

(n, k) T = 200 T = 500 T = 1000

0.97 0.98 0.95 0.97 0.97 0.99 0.98 0.97 0.95 0.97 0.99 0.99 0.99 0.98 0.98

0.96 0.97 0.94 0.97 0.97 0.98 0.97 0.97 0.93 0.97 0.98 0.97 0.98 0.97 0.98

0.97 0.96 0.97 0.97 0.97 0.97 0.96 0.95 0.92 0.98 0.98 0.97 0.98 0.98 0.98

0.96 0.96 0.93 0.95 0.96 0.97 0.98 0.96 0.94 0.98 0.96 0.96 0.95 0.95 0.97

(10, 10)

0.95 0.96 0.95 0.93 0.95 0.98 0.97 0.96 0.91 0.96 0.99 0.98 0.98 0.97 0.98

Average 0.96 0.96 0.98

0.99 0.99 0.99 0.99 0.96 0.99 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.97

0.99 0.99 0.99 0.98 0.94 0.99 0.97 0.99 0.97 0.99 0.99 0.99 0.99 0.99 0.98

0.99 0.99 0.99 0.98 0.96 0.99 0.98 0.98 0.97 0.99 0.99 0.99 0.99 0.99 0.97

0.98 0.98 0.98 0.98 0.98 0.99 0.95 0.98 0.97 0.98 0.99 0.99 0.99 0.99 0.97

(20, 15)

0.98 0.97 0.98 0.97 0.95 0.98 0.97 0.96 0.96 0.96 0.99 0.98 0.99 0.98 0.97

Average 0.98 0.98 0.99

1.00 1.00 0.99 0.99 0.92 1.00 0.99 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99

0.99 0.99 0.99 0.99 0.97 0.99 1.00 0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99

0.99 0.99 0.99 0.97 0.96 1.00 0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.98 0.99

0.97 0.98 0.99 0.99 0.91 0.98 0.99 0.99 0.97 0.99 1.00 0.99 0.99 0.99 0.99

(30, 20)

0.99 0.99 0.98 0.99 0.97 0.97 0.99 0.98 0.97 0.98 0.99 0.99 0.99 0.99 0.99

Average 0.98 0.99 0.99
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5 Data: Multinational Macroeconomic Panel

Table 5.3 describes the list of variables we use for the first application. We attach the

link of the website we downloaded the specific variable to the variable name in the table.

The second column of 5.3 is the stationarity transformation for each variable.

Table 5.3: List of variables

Variable Transformation

Real GDP No transformation

Consumption ∆ log(x)

Labor unit costs ∆x

Unemployment ∆x

Headline CPI ∆x

Energy CPI ∆x

Food CPI ∆x

Core CPI ∆x

Imports ∆ log(x)

Exports ∆ log(x)
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https://data-explorer.oecd.org/vis?df[ds]=dsDisseminateFinalDMZ&df[id]=DSD_NAMAIN1%40DF_QNA_EXPENDITURE_GROWTH_OECD&df[ag]=OECD.SDD.NAD&df[vs]=1.0&pd=1990-Q1%2C2024-Q1&dq=Q..OECD%2BTUR%2BG7%2BUSA%2BGBR%2BCHE%2BSWE%2BESP%2BPRT%2BNOR%2BNZL%2BNLD%2BMEX%2BLUX%2BKOR%2BJPN%2BITA%2BISR%2BDEU%2BFRA%2BFIN%2BDNK%2BCAN%2BAUT%2BAUS...B1GQ......G1.&to[TIME_PERIOD]=false&vw=ov
https://data-explorer.oecd.org/vis?df[ds]=dsDisseminateFinalDMZ&df[id]=DSD_NAMAIN1%40DF_QNA_EXPENDITURE_USD&df[ag]=OECD.SDD.NAD&df[vs]=1.1&dq=Q..OECD%2BG7%2BUSA%2BGBR%2BCHE%2BSWE%2BESP%2BPRT%2BNOR%2BNLD%2BNZL%2BMEX%2BLUX%2BKOR%2BJPN%2BITA%2BIRL%2BDEU%2BFRA%2BFIN%2BDNK%2BCAN%2BAUT%2BAUS.S1M..P3.....LR..&pd=1990-Q1%2C2024-Q2&to[TIME_PERIOD]=false
https://data-explorer.oecd.org/vis?fs[0]=Frequency%20of%20observation%2C0%7CQuarterly%23Q%23&fs[1]=Topic%2C1%7CEconomy%23ECO%23%7CProductivity%23ECO_PRO%23&pg=0&fc=Topic&snb=1&df[ds]=dsDisseminateFinalDMZ&df[id]=DSD_PDB%40DF_PDB_ULC_Q&df[ag]=OECD.SDD.TPS&df[vs]=1.0&dq=OECD%2BUSA%2BGBR%2BCHE%2BSWE%2BESP%2BPRT%2BNOR%2BNZL%2BNLD%2BLUX%2BKOR%2BJPN%2BITA%2BIRL%2BDEU%2BFRA%2BFIN%2BDNK%2BCAN%2BAUT%2BAUS.Q.ULCE..IX...S.&pd=1990-Q1%2C2024-Q1&to[TIME_PERIOD]=false
https://data-explorer.oecd.org/vis?fs[0]=Topic%2C1%7CEmployment%23JOB%23%7CUnemployment%20indicators%23JOB_UNEMP%23&fs[1]=Reference%20area%2C0%7CAustralia%23AUS%23&fs[2]=Reference%20area%2C0%7CAustria%23AUT%23&fs[3]=Reference%20area%2C0%7CCanada%23CAN%23&fs[4]=Reference%20area%2C0%7CSwitzerland%23CHE%23&fs[5]=Reference%20area%2C0%7CGermany%23DEU%23&fs[6]=Reference%20area%2C0%7CDenmark%23DNK%23&fs[7]=Reference%20area%2C0%7CSpain%23ESP%23&fs[8]=Reference%20area%2C0%7CFinland%23FIN%23&fs[9]=Reference%20area%2C0%7CFrance%23FRA%23&fs[10]=Reference%20area%2C0%7CG7%23G7%23&fs[11]=Reference%20area%2C0%7CUnited%20Kingdom%23GBR%23&fs[12]=Reference%20area%2C0%7CGreece%23GRC%23&fs[13]=Reference%20area%2C0%7CIreland%23IRL%23&fs[14]=Reference%20area%2C0%7CIsrael%23ISR%23&fs[15]=Reference%20area%2C0%7CItaly%23ITA%23&fs[16]=Reference%20area%2C0%7CJapan%23JPN%23&fs[17]=Reference%20area%2C0%7CKorea%23KOR%23&fs[18]=Reference%20area%2C0%7CLuxembourg%23LUX%23&fs[19]=Reference%20area%2C0%7CMexico%23MEX%23&fs[20]=Reference%20area%2C0%7CNetherlands%23NLD%23&fs[21]=Reference%20area%2C0%7CNorway%23NOR%23&fs[22]=Reference%20area%2C0%7CNew%20Zealand%23NZL%23&fs[23]=Reference%20area%2C0%7COECD%23OECD%23&fs[24]=Reference%20area%2C0%7CPortugal%23PRT%23&fs[25]=Reference%20area%2C0%7CSweden%23SWE%23&fs[26]=Reference%20area%2C0%7CUnited%20States%23USA%23&fs[27]=Frequency%20of%20observation%2C0%7CQuarterly%23Q%23&pg=0&fc=Frequency%20of%20observation&snb=6&vw=tb&df[ds]=dsDisseminateFinalDMZ&df[id]=DSD_LFS%40DF_IALFS_UNE_M&df[ag]=OECD.SDD.TPS&df[vs]=1.0&dq=AUS%2BAUT%2BCAN%2BCHE%2BDEU%2BDNK%2BESP%2BFIN%2BFRA%2BG7%2BGBR%2BGRC%2BIRL%2BISR%2BITA%2BJPN%2BKOR%2BLUX%2BMEX%2BNLD%2BNOR%2BNZL%2BOECD%2BPRT%2BSWE%2BUSA..._Z.Y._T.Y_GE15..Q&pd=1990-Q1%2C2024-Q2&to[TIME_PERIOD]=false&ly[cl]=TIME_PERIOD&ly[rw]=REF_AREA
https://data-explorer.oecd.org/vis?fs[0]=Topic%2C1%7CEconomy%23ECO%23%7CPrices%23ECO_PRI%23&pg=0&fc=Topic&bp=true&snb=16&df[ds]=dsDisseminateFinalDMZ&df[id]=DSD_PRICES%40DF_PRICES_ALL&df[ag]=OECD.SDD.TPS&df[vs]=1.0&pd=1950-Q1%2C2024-Q2&dq=OECD%2BG7%2BUSA%2BGBR%2BTUR%2BCHE%2BSWE%2BESP%2BSVN%2BSVK%2BPRT%2BPOL%2BNOR%2BNZL%2BNLD%2BMEX%2BLUX%2BLTU%2BLVA%2BKOR%2BJPN%2BITA%2BISR%2BIRL%2BHUN%2BISL%2BGRC%2BFRA%2BDEU%2BFIN%2BEST%2BDNK%2BCZE%2BCOL%2BCAN%2BBEL%2BAUT%2BAUS.Q.N%2BHICP.CPI.PA.CP01%2B_TXCP01_NRG%2BCP045_0722%2BSERV%2B_T.N.GY&to[TIME_PERIOD]=false&vw=tb&ly[cl]=TIME_PERIOD&ly[rs]=METHODOLOGY%2CEXPENDITURE&ly[rw]=REF_AREA
https://data-explorer.oecd.org/vis?fs[0]=Topic%2C1%7CEconomy%23ECO%23%7CPrices%23ECO_PRI%23&pg=0&fc=Topic&bp=true&snb=16&df[ds]=dsDisseminateFinalDMZ&df[id]=DSD_PRICES%40DF_PRICES_ALL&df[ag]=OECD.SDD.TPS&df[vs]=1.0&pd=1950-Q1%2C2024-Q2&dq=OECD%2BG7%2BUSA%2BGBR%2BTUR%2BCHE%2BSWE%2BESP%2BSVN%2BSVK%2BPRT%2BPOL%2BNOR%2BNZL%2BNLD%2BMEX%2BLUX%2BLTU%2BLVA%2BKOR%2BJPN%2BITA%2BISR%2BIRL%2BHUN%2BISL%2BGRC%2BFRA%2BDEU%2BFIN%2BEST%2BDNK%2BCZE%2BCOL%2BCAN%2BBEL%2BAUT%2BAUS.Q.N%2BHICP.CPI.PA.CP01%2B_TXCP01_NRG%2BCP045_0722%2BSERV%2B_T.N.GY&to[TIME_PERIOD]=false&vw=tb&ly[cl]=TIME_PERIOD&ly[rs]=METHODOLOGY%2CEXPENDITURE&ly[rw]=REF_AREA
https://data-explorer.oecd.org/vis?fs[0]=Topic%2C1%7CEconomy%23ECO%23%7CPrices%23ECO_PRI%23&pg=0&fc=Topic&bp=true&snb=16&df[ds]=dsDisseminateFinalDMZ&df[id]=DSD_PRICES%40DF_PRICES_ALL&df[ag]=OECD.SDD.TPS&df[vs]=1.0&pd=1950-Q1%2C2024-Q2&dq=OECD%2BG7%2BUSA%2BGBR%2BTUR%2BCHE%2BSWE%2BESP%2BSVN%2BSVK%2BPRT%2BPOL%2BNOR%2BNZL%2BNLD%2BMEX%2BLUX%2BLTU%2BLVA%2BKOR%2BJPN%2BITA%2BISR%2BIRL%2BHUN%2BISL%2BGRC%2BFRA%2BDEU%2BFIN%2BEST%2BDNK%2BCZE%2BCOL%2BCAN%2BBEL%2BAUT%2BAUS.Q.N%2BHICP.CPI.PA.CP01%2B_TXCP01_NRG%2BCP045_0722%2BSERV%2B_T.N.GY&to[TIME_PERIOD]=false&vw=tb&ly[cl]=TIME_PERIOD&ly[rs]=METHODOLOGY%2CEXPENDITURE&ly[rw]=REF_AREA
https://data-explorer.oecd.org/vis?fs[0]=Topic%2C1%7CEconomy%23ECO%23%7CPrices%23ECO_PRI%23&pg=0&fc=Topic&bp=true&snb=16&df[ds]=dsDisseminateFinalDMZ&df[id]=DSD_PRICES%40DF_PRICES_ALL&df[ag]=OECD.SDD.TPS&df[vs]=1.0&pd=1950-Q1%2C2024-Q2&dq=OECD%2BG7%2BUSA%2BGBR%2BTUR%2BCHE%2BSWE%2BESP%2BSVN%2BSVK%2BPRT%2BPOL%2BNOR%2BNZL%2BNLD%2BMEX%2BLUX%2BLTU%2BLVA%2BKOR%2BJPN%2BITA%2BISR%2BIRL%2BHUN%2BISL%2BGRC%2BFRA%2BDEU%2BFIN%2BEST%2BDNK%2BCZE%2BCOL%2BCAN%2BBEL%2BAUT%2BAUS.Q.N%2BHICP.CPI.PA.CP01%2B_TXCP01_NRG%2BCP045_0722%2BSERV%2B_T.N.GY&to[TIME_PERIOD]=false&vw=tb&ly[cl]=TIME_PERIOD&ly[rs]=METHODOLOGY%2CEXPENDITURE&ly[rw]=REF_AREA
https://data-explorer.oecd.org/vis?fs[0]=Topic%2C1%7CEconomy%23ECO%23%7CPrices%23ECO_PRI%23&pg=0&fc=Topic&bp=true&snb=16&df[ds]=dsDisseminateFinalDMZ&df[id]=DSD_PRICES%40DF_PRICES_ALL&df[ag]=OECD.SDD.TPS&df[vs]=1.0&pd=1950-Q1%2C2024-Q2&dq=OECD%2BG7%2BUSA%2BGBR%2BTUR%2BCHE%2BSWE%2BESP%2BSVN%2BSVK%2BPRT%2BPOL%2BNOR%2BNZL%2BNLD%2BMEX%2BLUX%2BLTU%2BLVA%2BKOR%2BJPN%2BITA%2BISR%2BIRL%2BHUN%2BISL%2BGRC%2BFRA%2BDEU%2BFIN%2BEST%2BDNK%2BCZE%2BCOL%2BCAN%2BBEL%2BAUT%2BAUS.Q.N%2BHICP.CPI.PA.CP01%2B_TXCP01_NRG%2BCP045_0722%2BSERV%2B_T.N.GY&to[TIME_PERIOD]=false&vw=tb&ly[cl]=TIME_PERIOD&ly[rs]=METHODOLOGY%2CEXPENDITURE&ly[rw]=REF_AREA
https://data-explorer.oecd.org/vis?fs[0]=Topic%2C1%7CEconomy%23ECO%23%7CPrices%23ECO_PRI%23&pg=0&fc=Topic&bp=true&snb=16&df[ds]=dsDisseminateFinalDMZ&df[id]=DSD_PRICES%40DF_PRICES_ALL&df[ag]=OECD.SDD.TPS&df[vs]=1.0&pd=1950-Q1%2C2024-Q2&dq=OECD%2BG7%2BUSA%2BGBR%2BTUR%2BCHE%2BSWE%2BESP%2BSVN%2BSVK%2BPRT%2BPOL%2BNOR%2BNZL%2BNLD%2BMEX%2BLUX%2BLTU%2BLVA%2BKOR%2BJPN%2BITA%2BISR%2BIRL%2BHUN%2BISL%2BGRC%2BFRA%2BDEU%2BFIN%2BEST%2BDNK%2BCZE%2BCOL%2BCAN%2BBEL%2BAUT%2BAUS.Q.N%2BHICP.CPI.PA.CP01%2B_TXCP01_NRG%2BCP045_0722%2BSERV%2B_T.N.GY&to[TIME_PERIOD]=false&vw=tb&ly[cl]=TIME_PERIOD&ly[rs]=METHODOLOGY%2CEXPENDITURE&ly[rw]=REF_AREA
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