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Matrix-valued time series are of great interests in economics

Figure 1: Growth Rates of Seven Macroeconomic Series for G7 Countries
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Matrix-valued time series are of great interests in economics

Figure 2: Growth Rates of Seven Macroeconomic Series for G7 Countries
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A standard dynamic factor model

Assume we observe k indicators for Germany, denoted as yt . Consider the following
dynamic factor model:

yt = Mft + εt ,

ft = Hρft−1 + νt .
(1)

▶ ft : a p × 1 vector of factors.

▶ M: a k × p loading matrix. p is the number of factors.

▶ Hρ: a k-dimensional diagonal matrix consisting of autoregressive coefficients.
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Matrix-valued time series are of great interests in economics

Figure 3: Growth Rates of Seven Macroeconomic Series for G7 Countries
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Standard multivariate time-series models

For an macroeconomic panel, in traditional multivariate time-series analysis, we usually
stack such matrices into vectors:

yt =

yUSoutput,t , . . . , y
US
import,t︸ ︷︷ ︸

US

, yCanadaoutput,t , . . . , y
Canada
import,t︸ ︷︷ ︸

Canada

, . . . , yJapanoutput,t , . . . , y
Japan
import,t︸ ︷︷ ︸

Japan


′

. (2)

A popular dynamic factor model for international macroeconomic panels:

yi ,t = bglobali f globalt + bregioni f regionr ,t + bcountryi f countryc,t + εi ,t , i = 1, . . . , n × k . (3)

▶ Used in Kose et al. (2003, 2008), Crucini et al. (2011), Miranda-Agrippino et al.
(2015), Ha et al. (2023)
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Limitations of standard dynamic factor models

▶ Cross-sectional dependencies: Relationships between variables across entities
(e.g., countries, indicators) are important but difficult to capture.

▶ Can geography tell the whole story?

▶ Dimensionality : As the number of variables increases, standard models face
estimation challenges.

▶ If we have 15 countries (5 regions) and 20 indicators, the dimension of the loading
space in (3) would be: 15× 20 + 15 + 15 = 330
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Development of factor models for matrix-valued series is still in its initial
stage



8/31

Contributions: Tailoring the model for macroeconomics studies

By tailoring the model for macroeconomic studies, we make the following two
contributions:

1. Incorporation of dynamic factors

▶ Persistency in macroeconomic data
▶ Forecasting

2. Accommodating time-varying volatility, cross-sectional correlation and outlier
adjustments in idiosyncratic components

▶ Time-varying volatilities in macroeconomic data
▶ Flexible for correlation in individual risks
▶ Adjusting for outliers instead of removing them
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Contributions: Tailoring the model for macroeconomics studies
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The Model
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Dynamic factor Models for matrix-valued time series (MDFM)

Consider the following dynamic factor model

Yt = AFtB
′ + Et ,

vec(Ft) = Hρ1
vec(Ft−1) + . . .+Hρq

vec(Ft−q) + ut
(4)

▶ Yt : an n × k matrix of observed data at time t

▶ A: an n × p1 matrix of factor loadings

▶ B: a k × p2 matrix of factor loadings

▶ Ft : a p1 × p2 factor matrix; vec(Ft): vectorized factors of Ft

▶ Et : a n × k idiosyncratic component

▶ Hρl
: a diagonal matrix of autoregressive coefficients (ρ1,l , . . . , ρp1p2,l)

′
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Interpretations

For the i-th row of the observed matrix Yt :

Yi ,.,t = Ai ,.FtB
′ + Ei ,.,t , i = 1, . . . , n. (5)

Similarly, for the j-th column:

Y.,j ,t = AFtB
′
.,j + E.,j ,t , j = 1, . . . , k . (6)
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A Kronecker structure in the covariance

vec(Et) ∼ MN (0nk , ωtΣc ⊗Σr ), (7)

▶ Σr : a covariance matrix with dimension n × n

▶ Σc : a covariance matrix with dimension k × k .

For any row, the conditional covariance is

Cov(Y′
i ,.,t |A,Ft ,B) = ωtσ

2
r ,i ,iΣc , i = 1, . . . , n,

For any column, the conditional covariance is

Cov(Y.,j ,t |A,Ft ,B) = ωtσ
2
c,j ,jΣr , j = 1, . . . , k ,

Σr and Σc represent the row-wise and column-wise covariances, respectively, that are
not be explained by the common components.
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Extension: time-varying volatlity

Specification 1: Time-varying volatility (Carriero et al., 2016)
Let ωt = exp(ht), where ht is a latent variable following an AR(1) process:

ht = ϕht−1 + uht , uht ∼ N (0, σ2
h), (8)

Specification 2. The explicit outlier component (Stock and Watson, 2016)
Let ωt = o2t , where o2t follows a mixture distribution that distinguishes between regular
observations ot = 1 and outliers with ot ⩾ 2. The probability that outliers occur is p,
which is assumed to have a beta prior.
Specification 3. Fat-tailed innovations (Jacquier et al., 2004)
Let ωt = q2t , where q2t follows an inverse-gamma distribution: q2t ∼ IG(l/2, l/2).
Then the marginal distribution of the vectorized error has a multivariate t distribution
with zero mean, scale matrix Σc ⊗Σr , and degree of freedom l

A more flexible specification
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Identification
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Identification problems

Problem 1:
Model (4) can be written as

Yt = AC−1CFtD
′(D′)−1B′ + Et , (9)

where C and D are p1 × p1 and p2 × p2 invertible matrices.

Problem 2:
Covariance matrix can only be identified up to scale:

mΣc ⊗m−1Σr = Σc ⊗Σr , ∀m ∈ R \ {0} (10)
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Identification conditions

1. Factor and idiosyncratic component are uncorrelated

2. Cov(ut) is a positive-definite diagonal matrix

3. A and B are lower triangular matrices with ones on their diagonals

4. The (1, 1) element of Σc is normalized to be 1.

The next two conditions can be used as a substitute for assumptions 2 and 3 above:

2.* Cov(ut) is an identity matrix

3.* One of the matrices of factor loadings, A or B, are lower-triangular matrices
with ones on the diagonal, while the other one is a lower-triangular matrix with
strictly positive diagonal elements.

Prior and Posterior
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Determining the Dimensions of the Factor Matrix
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We estimate marginal likelihoods to determine the dimensions of the
factor matrix

▶ We use a cross-entropy (CE) method to estimate marginal likelihood.

▶ The importance sampling estimator can be obtained from

p̂IS(y) =
1

N

N∑
n=1

p(y|θn)p(θn)

g(θn)
, (11)

where g(θn) is importance densities evaluated at importance draws θn.

▶ CE method is used to find the importance densities within a certain parametric
family (Chan and Eisenstat, 2015)
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Multinational Macroeconomic Panel
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Data

▶ The dataset includes 10 quarterly indicators of 19 countries from 1995.Q1 to
2023.Q3 for 115 quarters. Display data

▶ The countries include developed countries from North America, Europe, Asia and
Oceania.

▶ The indicators include real GDP, price indices, labor unit cost, unemployment
rates, international trade as well as household consumption.

▶ Each time series is adjusted for stationarity and standardized by demeaning and
dividing by their standard deviations.

The log marginal likelihood estimates suggest an 1× 2 factor matrix.
Log marginal likelihood estimates
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The 19 countries are categorized into 3 groups

Figure 4: Bar plots of sorted estimates for loading matrix A. The 19 countries are categorized
into 3 distinct groups based on the posterior probabilities that the differences between
neighboring values are greater than 0. The stars on the country labels show the significance
level of the corresponding estimates. There is no significance level on USA because we fix the
corresponding element in A to be 1.
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The 10 indicators are categorized into 4 groups

Figure 5: Bar plots of sorted estimates for B. The 10 indicators are categorized into 4 distinct
groups according to the first column (left) or the second column (right) of B. The stars on the
variable labels show the significance level of the corresponding estimates.
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Interpretations of factor estimates

Figure 6: Plots of estimates for the factor matrix and 90% credible intervals. The first column
of the matrix (left) impacts all indicators, likely representing a international business cycle. The
second factor influences all the indicators except for real GDP, starting with headline CPI.,
likely capturing price dynamics.
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The second factor co-move with oil prices

Figure 7: Yearly moving average of standardized growth rates of Brent crude oil price and the
second column factor estimates. The comovement between the two series is evident.
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Significant cross-indicator correlations in idiosyncratic components

Figure 8: Heatmap of estimates for Σc . Headline CPI is positively correlated with its
disaggregated components. Unemployment is negatively correlated with real GDP, labor unit
cost, etc. Labor unit cost is positively correlated to exports and imports.
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Significant cross-country correlations in idiosyncratic components

Figure 9: Heatmap of estimates for Σr . Idiosyncratic risks for countries in European Union are
correlated. UK is weakly correlated to EU
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Significant stochastic volatility

Figure 10: Estimates for stochastic volatility.

Fama-French 10 × 10 Panel
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Conclusion

We have:

▶ Developed a new dynamic factor model designed for matrix-valued time series

▶ Proposed an effective method to estimate this model and an approach to
determine the dimension of the factor matrix.

▶ Evaluated the performance of our estimators in practice using Monte Carlo
experiments.

▶ Illustrated the usefulness using empirical applications.
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Future direction

▶ Model Development:

1. Extend the model for data with higher-dimensional structure, such as a tensor
dynamic factor model.

2. Develop a sparse matrix factor model to focus on identifying and estimating only the
most relevant factors.

▶ Macroeconomic applications

1. Monetary shock transmission mechanism
2. Technology-spillover effects
3. Trade networks

. . .
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Thank you!

Check out the paper:
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A more flexible specification for the time-varying volatility

Consider the following more flexible specification for the time-varying volatility:

vec(Et) ∼ N (0,Dt) , (12)

▶ Independent stochastic volatility series: Dt = diag(eh1,1,t , eh2,1,t , . . . , ehn,k,t )

▶ Autoregressive processes:

hi ,j ,t = ϕi ,jhi ,j ,t−1 + ui ,j ,t , ui ,j ,t ∼ N (0, σ2
h,i ,j), t = 2, . . . ,T (13)

▶ The initial states are assumed to follow Gaussian priors.

▶ Tradeoff: Flexibility vs Complexity

Back
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The posterior sampler

Step 1. Sampling from (A′,Σr |Y,B,F,Σc)
We sample (A′,Σr ) conditional on the latent factors and other parameters from a
normal-inverse-Wishart distribution:

(A′,Σr | · ) ∼ NIW(Â′,K−1
A′ , ν̂r , Ŝr ),

where

KA′ = V−1
A′ +

T∑
t=1

ω−1
t FtB

′Σ−1
c BF′

t , Â′ = K−1
A′

(
V−1

A′ A
′
0 +

T∑
t=1

ω−1
t FtB

′Σ−1
c Y′

t

)

ν̂r = νr + Tk, Ŝr = Sr + A0V
−1
A′ A

′
0 +

T∑
t=1

ω−1
t YtΣ

−1
c Y′

t − ÂKA′Â′.

Back



6/23

Priors

▶ A Natural conjugate prior for the loadings:

Σr ∼ IW(νr ,Sr ), (vec(A′)|Σr ) ∼ N (vec(A′
0),Σr ⊗ VA′),

Σc ∼ IW(νc ,Sc), (vec(B′)|Σc) ∼ N (vec(B′
0),Σc ⊗ VB′).

(14)

▶ A truncated normal prior for the autoregressive coefficients:

ρj ,k ∼ T N (ρj ,k0,Vρj,k ), j = 1, ..., p1, k = 1, ..., p2.

▶ An inverse-gamma prior for λ2
j ,k : IG(νλj,k

, Sλj,k
)

▶ The first q values of Ft are treated unknown:

fj ,k,l ∼ N

(
0,

λ2
j ,k

1−
∑q

m=1 ρ
2
j ,k,m

)
, l = 1, . . . , q. (15)

Back
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The posterior sampler

1. Sample from (A′,Σr | · ) from a normal-inverse-Wishart distribution:

(A′,Σr | · ) ∼ NIW(Â′,K−1
A′ , ν̂r , Ŝr ).

▶ Apply Algorithm 2 in Cong et al. (2017) for the restrictions on the lower-triangular
structure of A

2. Sample from (B′,Σc | · ) from a normal-inverse-Wishart distribution:

(B,Σc | · ) ∼ NIW(B̂′,K−1
B′ , ν̂c , Ŝc).

▶ Apply Algorithm 2 in Cong et al. (2017) for the restrictions on the lower-triangular
structure of B.

▶ Apply the algorithm proposed by Nobile (2000) for the restriction on Σc .

3. Sample from (vec(Ft)| · ), t = 1, . . . ,T from a normal distribution.

4. Sample from (λ2
j ,k | · ), j = 1, ..., p1, k = 1, ..., p2 from an inverse gamma

distribution.

5. Sample from (ρj ,k | · ), j = 1, ..., p1, k = 1, ..., p2 using an Metropolis-Hastings
algorithm following Chib and Greenberg (1994) and Chan and Jeliazkov (2009).

Details
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The posterior sampler

Apply Algorithm 2 in Cong et al. (2017) or Algorithm 1 in Chan and Qi (2024) to
efficiently sample (vec(A′)| · ) ∼ N (vec(Â′),Σr ⊗K−1

A′ ) such that MA′vec(A′) = a0. In
particular, one can first sample vec(A′

u) from the unconstrained conditional posterior
distribution in Step 1, and then return

vec(A′) = vec(A′
u) + (Σr ⊗K−1

A′ )M
′
A′
(
MA′(Σr ⊗K−1

A′ )M
′
A′
)−1

(a0 −MA′vec(A′
u)),

which can be realized by the following four steps:

1. Compute C = CΣ−1
r

⊗ CKA′ , where CΣ−1
r

is the lower Cholesky factor of Σ−1
r , and

CKA′ is the lower Cholesky factor of KA′ ;

2. Solve CC′U = M′
A′ for U;

3. Solve MA′UV = U′ for V;

4. Return vec(A′) = vec(A′
u) + V′(a0 −MA′vec(A′

u)).

Back
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The posterior sampler

Step 2. Sampling from (B′,Σc |Y,A,F,Σr )
Similar to step 1, (B,Σc) are drawn from a normal-inverse-Wishart distribution:

(B,Σc | · ) ∼ NIW(B̂′,K−1
B′ , ν̂c , Ŝc),

where

KB′ = V−1
B′ +

T∑
t=1

ω−1
t F′

tA
′Σ−1

r AFt , B̂′ = K−1
B′

(
V−1

B′ B
′
0 +

T∑
t=1

ω−1
t F′

tA
′Σ−1

r Yt

)

ν̂c = νc + Tn, Ŝc = Sc + B0V
−1
B′ B

′
0 +

T∑
t=1

ω−1
t Y′

tΣ
−1
r Yt − B̂KB′B̂′.

Back
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The posterior sampler
We sample (B′,Σc | · ) in two steps. First, we sample Σc marginally from
(Σc | · ) ∼ IW(Ŝc , ν̂c) with the restriction that σc,1,1 = 1. We use the algorithm by
Nobile (2000) for this step, outlined below:

1. Exchange row/column 1 and n in the matrix Ŝc . Denote this matrix as ŜTrans
c .

2. Construct a lower triangular matrix such that
▶ δii equal to the square root of χ2

ν̂c+1−i for i = 1, . . . , n − 1;

▶ δnn = (lnn)
−1, where lnn is the (n, n)-th element in the Cholesky decomposition of

(ŜTrans
c )−1, denoted as L

▶ δij equal to N (0, 1) random variates, i > j .

3. Set Σc = (L−1)′(−1)′−1L−1.

4. Exchange the row/column 1 and n of Σc back.

Then we simulate from a normal distribution for B:

(vec(B′)|Y,A,F,ΣrΣc) ∼ N (vec(B̂′),Σc ⊗K−1
B′ ),

which can be done using the algorithm depicted in step 1.
Back
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The posterior sampler

Step 3. Sampling from (vec(Ft)|Yt ,A,B,Σr ,Σc ,ω
2,ρ), t = 1, . . . ,T

We sample the factors by t. Specifically, conditional on parameters, vec(Ft) from a
normal distribution:

(vec(Ft)| · ) ∼ N (̂ft ,K
−1
ft

),

where

Kft = ω−1
t B′Σ−1

c B⊗ A′Σ−1
r A+ Λ−1

t

f̂t = K−1
ft

[
ω−1
t (B′Σ−1

c ⊗ A′Σ−1
r )vec(Yt)

]
for t = 1, . . . , q,

f̂t = K−1
ft

[
ω−1
t (B′Σ−1

c ⊗ A′Σ−1
r )vec(Yt) + Λ−1

t

q∑
m=1

Hρm
ft−m

]
for t = q + 1, . . . ,T ,

where for t = 1, . . . , q, Λt = diag(λ2/(1−
∑q

m=1 ρ
2
m)), and for t = 2, . . . ,T ,

Λt = diag(λ2). ρm = (ρ1,1,m, . . . , ρp1,p2,m)
′, λ = (λ1,1, . . . , λp1,p2)

′.
Hρm

= diag(ρ1,1,m, ρ2,1,m, ..., ρp1,p2,m).
Back
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The posterior sampler

Step 4. Sampling from (λ2
j ,k |fj ,k ,ρj ,k), j = 1, ..., p1, k = 1, ..., p2

It is clear that (λ2
j ,k |fj ,k ,ρj ,k) ∼ IG(ν̂λj,k

, Ŝλj,k
), where ν̂λj,k

= νλj,k
+ T

2 , and

Ŝλj,k
= Sλj,k

+
1
2

[∑q
t=1 f

2
j ,k,t(1−

∑
m ρ2j ,k,m) +

∑T
t=q+1(fj ,k,t − ρj ,k,1fj ,k,t−1 − ...− ρj ,k,qfj ,k,q)

2
]
.

Back
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The posterior sampler

Step 5. Sampling from (ρj ,k |fj ,k , λ2
j ,k), j = 1, ..., p1, k = 1, ..., p2

Note that ρj ,k is a q × 1 vector: ρj ,k = (ρj ,k,1, . . . , ρj ,k,q)
′. We rewrite (??) as follows:

f̃j ,k = F̃j ,kρj ,k + uj ,k , uj ,k ∼ N (0, λj ,k IT−q), (16)

where f̃j ,k = (fj ,k,q+1, . . . , fj ,k,T )
′, and

F̃j ,k =


fj ,k,1 fj ,k,2 · · · fj ,k,q
fj ,k,2 fj ,k,3 · · · fj ,k,q+1
... · · · · · ·

...
fj ,k,T−q fj ,k,T−q+1 · · · fj ,k,T


(T−q)×q

Back
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The posterior sampler

Following Chib and Greenberg (1994) and Chan and Jeliazkov (2009), we design an
Metropolis-Hastings algorithm with proposal ρ∗

j ,k ∼ N (ρ̂j ,k ,K
−1
ρj,k

), where

Kρj,k
= V−1

ρj,k
+ F̃′

j ,k F̃j ,k/λ
2
j ,k , ρ̂j ,k = K−1

ρj,k
(V−1

ρj,k
ρj ,k,0 + F̃′

j ,k f̃j ,k/λ
2
j ,k). The proposed

value ρ∗
j ,k is accepted with probablity

αMH(ρj ,k ,ρ
∗
j ,k) = min

{
1,

fN (fj ,k,1:q|0, λ2
j ,k/(1−

∑
m ρ∗2j ,k,m)Iq)

fN (fj ,k,1:q|0, λ2
j ,k/(1−

∑
m ρ2j ,k,m)Iq)

}
.

Back
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Simulation Results
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Data generating process

The parameters are drawn as follows

▶ Free parameters in A and B are sampled from U(0, 1)
▶ ρj ,k ∼ U(0.8, 0.9)
▶ Σc to 0.3Ik , Σr to 0.5In

▶ λ2
j ,k = 1 for j = 1, . . . , p1, k = 1, . . . , k

Sample size

▶ (n, k) ∈ {(10, 10), (20, 15), (30, 20)}
▶ T ∈ {200, 500, 1000}
▶ The factor matrices are preset to dimensions (p1, p2) = (3, 2) or (p1, p2) = (5, 5)
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Adjusted R2 from regressing true values on estimates: small factor matrix

Figure 11: Adjusted R2 from regressing the true factors on the estimates: p1 = 3, p2 = 2
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Adjusted R2 from regressing true values on estimates: large factor matrix

Figure 12: Adjusted R2 from regressing true factors on estimates: p1 = 5, p2 = 5
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Can marginal likelihoods uncover the true model?

Figure 13: Estimates for log marginal likelihoods when true order of the factor matrix is p1 = 3,
p2 = 2
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Can marginal likelihoods uncover the true model?

Figure 14: Estimates for log marginal likelihoods when true order of the factor matrix is p1 = 5,
p2 = 5
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Log marginal likelihood estimates imply an 1× 2 factor matrix

Table 1: Log marginal likelihood estimates

p2 = 1 p2 = 2 p2 = 3

p1 = 1 -17362 -17325 -17348
(0.48) (0.58) (0.64)

p1 = 2 -17443 -17439 -17499
(0.54) (0.36) (0.58)

p1 = 3 -17508 -17542 -17598
(0.55) (0.68) (0.82)

Back
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Log marginal likelhood estimates suggest an 1× 3 factor matrix

Table 2: Estimates for log marginal likelihoods

p2 = 1 p2 = 2 p2 = 3

p1 = 1 -44630.3 -43928.7 -43638.4
(0.33) (0.27) (0.34)

p1 = 2 -43740.5 -43417.9 -43408.4
(0.56) (0.52) (0.38)

p1 = 3 -43867 -43857.2 -43435.4
(0.45) (0.41) (0.53)

Back
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Correlations among factors suggest a more flexible specification for the
factor evolution process

Table 3: Correlation coefficients of the six factor series

f1,1 f2,1 f1,2 f2,2 f1,3 f2,3

f1,1 1.00 0.14*** 0.19*** 0.06* 0.16*** -0.07
f2,1 0.14*** 1.00 -0.35 0.13*** -0.23 -0.41
f1,2 0.19*** -0.35 1.00 -0.06 0.47*** 0.55***
f2,2 0.06* 0.13*** -0.06 1.00 -0.35 -0.20
f1,3 0.16*** -0.23 0.47*** -0.35 1.00 0.48***
f2,3 -0.07 -0.41 0.55*** -0.20 0.48*** 1.00
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