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Abstract

There is an increasing interest in applying variational Bayes techniques to esti-

mating large Bayesian vector autoregressions (VARs) with stochastic volatility.

However, less attention has been paid to the development of appropriate tools for

comparing these high-dimensional models, especially among those designed to ad-

dress COVID-19 outliers. This paper develops a marginal likelihood estimator that

combines importance sampling and variational approximation for comparing large

VARs with different time-varying volatility specifications and outlier adjustments.

Through a Monte Carlo study, we show that the proposed approach is fast and able

to identify the correct models. The effectiveness of the proposed method is further

illustrated through an empirical application of comparing a variety of 180-variable

VARs.

Keywords: Variational inference, large vector autoregression, marginal likelihood,

Bayesian model comparison, stochastic volatility, outlier adjustment

∗Yu would like to acknowledge financial support from the Shanghai Sailing Program (No.
23YF1402000) and the National Natural Science Foundation of China (72303040).



1 Introduction

Since the seminal work of Bańbura et al. (2010), large Bayesian vector autoregressions

(VARs) have become standard tools in empirical macroeconomics for forecasting and

structural analysis. Prominent examples include Carriero et al. (2009), Koop (2013),

Koop and Korobilis (2013), Bańbura et al. (2015), Korobilis and Pettenuzzo (2019) and

Huber and Feldkircher (2019). More recently, there is a surge in interest in developing

various stochastic volatility specifications for large Bayesian VARs (see, e.g., Carriero

et al., 2016, 2019; Chan, 2020a; Tsionas et al., 2022), due to the increasing recognition

of the importance of time-varying volatility in modeling macroeconomic and financial

variables. Naturally, the unprecedented economic turbulence triggered by the COVID-19

pandemic hastens this upward trend.

However, an important bottleneck that impedes the routine application of large Bayesian

VARs, particularly when flexible features such as stochastic volatility or outlier adjust-

ments are included, is the computational burden of conventional Markov chain Monte

Carlo (MCMC) methods. This motivates the use of variational Bayes approaches to ap-

proximate the posterior distributions in large VARs; recent papers include Koop and Ko-

robilis (2018), Gefang et al. (2020, 2023), Chan and Yu (2022), and Bernardi et al. (2024).

We contribute to this line of research by considering a related but unsolved problem of

comparing these large Bayesian VARs with stochastic volatility and outlier adjustments.

We tackle a key challenge for practitioners: multiple nonlinear, high-dimensional VARs

are available for a particular dataset, but there are no adequate tools to compare or select

among them.

We consider a variational importance sampling (VIS) method to estimate the marginal

likelihoods of large VARs, by combining the variational Bayes and importance sampling

techniques. More specifically, we first obtain the optimal density from the variational

Bayes by minimizing the Kullback-Leibler divergence to the posterior distribution. This

optimal density is then used as the importance sampling density to generate independent

samples for the associated marginal likelihood estimator.1 In other words, the proposed

1There is a long tradition of using importance sampling methods to estimate the marginal likelihood
or the posterior distribution. For example, Perrakis, Ntzoufras, and Tsionas (2014) propose using the
product of marginal posteriors as an importance sampling density to estimate the marginal likelihood;
Chan and Eisenstat (2015, 2018) use the cross-entropy method to obtain the optimal importance sampling
density within a given parametric family of distributions. For approximating the posterior distribution,
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approach is applicable to settings in which we have a variational density for the model

and an efficient way to sample from it to implement the importance sampling estimator.

The latter step is typically easy, especially when mean-field approximation is used, as

the variational density would then be a product of standard densities or low-dimensional

non-standard densities. For models that have previously been fitted using variational

Bayes, the first requirement is also satisfied. This distinguishes our approach from various

marginal likelihood estimators that rely on MCMC methods (e.g., Gelfand and Dey, 1994;

Newton and Raftery, 1994; Chib, 1995; Frühwirth-Schnatter and Wagner, 2008; Perrakis

et al., 2014; Chan and Eisenstat, 2015, 2018). The proposed approach has the advantage

of avoiding the use of MCMC draws, which are very costly to obtain in high-dimensional

settings.

Our second contribution involves comparing alternative specifications of outlier adjust-

ments in the context of large VARs with stochastic volatility. In particular, we develop

computationally efficient algorithms to obtain the variational densities for various very

high-dimensional VARs with stochastic volatility. This is motivated by the new challenge

for empirical macroeconomists caused by the extreme movements in many macroeconomic

variables at the onset of the COVID-19 pandemic. For instance, in a dataset comprising

104 macroeconomic time-series constructed from the FRED-MD database, 32 variables

reached unprecedented levels/rates in April 2020; four variables exceeded over ten times

their previous record values. Such extreme variability can significantly impact parameter

estimates and forecasts from standard VARs, as demonstrated by Schorfheide and Song

(2021) and Bobeica and Hartwig (2023). Consequently, several recent papers, such as

Lenza and Primiceri (2022) and Carriero et al. (2022b), have proposed different ways

to address these COVID-19 outliers in the setting of Bayesian VARs. We demonstrate

the usefulness of the proposed VIS method to evaluate these recently proposed outlier

adjustments.

Our paper is closely related to two recent works. The first is Hajargasht and Woźniak

(2020), who use the optimal density obtained from the variational Bayes method as a

weighting density in the modified harmonic mean estimator of Geweke (1999). While they

illustrate their method using a homoskedastic VAR of seven variables, we focus on large

VARs with stochastic volatility. The second paper is Chan (2023), who proposes marginal

Dellaportas and Tsionas (2019) consider using a product of univariate Student-t densities and a copula
function, where the parameters are obtained using importance sampling.
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likelihood estimators for large VARs with stochastic volatility. But since those estimators

are constructed using MCMC draws, the computational burden becomes excessive when

the dimension of the VAR is very large (e.g., over 50 variables). We circumvent this

computational issue by using the variational Bayes approach instead of MCMC methods.

Using datasets of different sizes constructed from the FRED-QD database, we show that

parameter estimates from the variational Bayes approach are as accurate as those pro-

duced by MCMC. In addition, through a series of Monte Carlo experiments, we demon-

strate that the variational Bayes approach can dramatically reduce the computational

time. For instance, for a dataset consisting of 100 variables and 500 observations, MCMC

takes around 20 hours, while the variational Bayes method takes only 3 minutes. More

importantly, the Monte Carlo results show that the VIS estimator can be used to correctly

select the true models.

We illustrate the methodology via a Bayesian model comparison exercise using two

datasets. The first dataset is the same as that in Carriero et al. (2022b), which consists of

16 monthly variables and covers the period from March 1959 to March 2021. The second

dataset is constructed from the FRED-QD database that includes 180 variables and spans

from September 1959 to December 2023. We find that VARs with stochastic volatility are

decidedly favored over the standard homoskedastic VAR for both datasets. This result is

consistent with the growing body of evidence that underscores the significance of stochas-

tic volatility in modeling both medium and large macroeconomic datasets. Furthermore,

the time-varying volatility model of Lenza and Primiceri (2022) is outperformed by other

stochastic volatility VARs. Among the latter models, the medium dataset shows a slight

preference for the outlier specification proposed in Carriero et al. (2022b), whereas the

large dataset with 180 time-series prefers a standard VAR with stochastic volatility.

The rest of the paper is organized as follows. Section 2 describes a variety of VARs with

different time-varying volatility specifications and outlier components. Section 3 outlines

the basic theory on variational Bayes, particularly the mean-field approximation. Sec-

tion 4 develops the marginal likelihood estimator that combines the variational Bayes

method and importance sampling. We then illustrate the proposed approach with a sim-

ple linear regression and compare the estimates with alternative methods. In Section 5,

we conduct a series of Monte Carlo experiments to evaluate the accuracy of the varia-

tional Bayes estimates and to assess whether the proposed marginal likelihood estimator
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can correctly identify the true models. Section 6 presents the empirical application in

which we compare various VARs with different types of time-varying volatility and outlier

adjustments. Lastly, Section 7 concludes.

2 Large VARs with Stochastic Volatility and Outlier

Adjustments

We begin this section by presenting the baseline model—a reduced-form VAR with the

Cholesky stochastic volatility developed by Cogley and Sargent (2005) that is especially

suitable for modeling large datasets (Carriero et al., 2019). Next, we describe a few

recently proposed specifications that can be added to this baseline model to account for

COVID-19 outliers. Lastly, we outline a data-driven Minnesota prior that is particularly

useful for high-dimensional VARs.

2.1 A Reduced-Form VAR with Stochastic Volatility

Let yt = (y1,t, . . . , yn,t)
′ be an n× 1 vector of variables that is observed over the periods

t = 1, . . . , T . Consider the following reduced-form VAR with p lags:

yt = a0 +A1yt−1 + · · ·+Apyt−p + εt, εt ∼ N (0,Σt), (1)

where a0 denotes an n × 1 vector of intercepts, and A1, . . . ,Ap are n × n coefficient

matrices. Following Cogley and Sargent (2005), the covariance matrix of the innovations

is modeled using n stochastic volatility processes in order to account for the potential

heteroskedasticity and time-varying covariances. In particular,

Σ−1
t = B′

0D
−1
t B0, (2)

where Dt = diag(eh1,t , . . . , ehn,t), and B0 is an n×n lower triangular matrix with ones on

the diagonal. Each element of ht = (h1,t, . . . , hn,t)
′ follows a random walk process

hi,t = hi,t−1 + uhi,t, uhi,t ∼ N (0, σ2
i ) (3)
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for t = 1, 2, . . . , T , and the initial condition hi,0 is treated as an unknown parameter to

estimate. We refer to this baseline stochastic volatility model as VAR-SV.

The VAR in (1) is a natural multivariate generalization of univariate autoregressive mod-

els and is a workhorse model in empirical macroeconomics. The time-series generated

from a stable VAR—i.e., all eigenvalues of its companion matrix have modulus less than

one—is weakly dependent (Lütkepohl, 2005). In contrast to the conventional assumption

of homoskedastic innovations, the error covariance matrix specified in (2) can accommo-

date time-varying variances and covariances. In addition, the random walk specification

of the log volatilities in (3) ensures that the variances are persistent, which is especially

useful for modeling volatility clustering.

The VAR-SV model contains a different stochastic volatility process for each of its n

variables, enhancing its flexibility. However, this feature demands extensive posterior

computations, particularly when employing conventional MCMC algorithms. To miti-

gate these computational demands, we adopt the equation-by-equation approach—based

on a triangularization of the VAR—developed by Carriero et al. (2019, 2022a). But in-

stead of using MCMC methods, we employ the variational Bayes approach designed to

approximate the posterior distribution efficiently.

2.2 Stochastic Volatility with Outlier Adjustments

Next, we discuss three modeling strategies that have been used in the literature to account

for COVID-19 outliers. The first strategy explicitly specifies an outlier component by

using a discrete mixture of distributions. The second strategy characterizes the infrequent

occurrences of outliers using the t distribution that has more mass at the tails than the

Gaussian. The last strategy takes advantage of the known timing of the COVID-19

pandemic, and treats it as a deterministic break in the covariance matrix. It also allows

for the potentially elevated volatility after the outbreak of the pandemic.

Specification 1: An explicit outlier component

The first specification introduces outlier indicators that have a discrete mixture represen-

tation that is proposed by Stock and Watson (2016) and is later adapted to VAR settings
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in Carriero et al. (2022b). More specifically, the outlier indicators enter the model in a

diagonal matrix of scale factors, denoted Ot, with diagonal elements oi,t that are mutually

independent over all i and t. With B0 and Dt specified as before, the covariance matrix

now takes the form:

Σt = B−1
0 OtDtO

′
t(B

−1
0 )′.

The outlier indicator oi,t is assumed to have a mixture distribution that distinguishes

between regular observations oi,t = 1 and outliers with oi,t ⩾ 2. The probability that

outliers in variable i occur is poi
. We follow Carriero et al. (2022b) and assume that

when the outliers occur, they follow a uniform distribution on (2, 20), i.e., oi,t ∼ U(2, 20).
The outlier probability poi

is assumed to have a beta prior B(apoi , bpoi ).
2 We refer to this

outlier model as the VAR-SVO model.

Specification 2: Student-t distributed innovations

The second specification extends the VAR-SV model by incorporating the latent variables

qi,t, for i = 1, . . . , n, t = 1, . . . , T . In particular, the squares of the latent variables are

mutually independent and identically distributed (iid) over all i and t and have an inverse-

gamma distribution:

q2i,t ∼ IG
(
li
2
,
li
2

)
.

Let Qt = diag(q1,t, . . . , qn,t). Then, the error covariance matrix of the VAR takes the

form

Σt = B−1
0 QtDtQ

′
t(B

−1
0 )′.

Under this set-up, the vector of innovations can be written as εt = B−1
0 QtD

1
2
t vt, where

vt ∼ N (0, In). It is important to note that the product qi,tvi,t (scaled by B−1
0 D

1
2
t ) has a

student-t distribution with li degree of freedom, since vi,t ∼ N (0, 1) and li/q
2
i,t ∼ χ2

li
. We

therefore call this extension the VAR-SVt model.

2In practice, the hyperparameters apoi
and bpoi

are calibrated so that the mean outlier frequency is
once every 4 years in quarterly or monthly data; see, e.g., Carriero et al. (2022b) for details.
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Specification 3: Common volatility with a deterministic break date

The third modeling strategy, proposed by Lenza and Primiceri (2022), is tailored to the

COVID-19 pandemic, where the break date t∗ is known. Specifically, the error covariance

matrix now takes the form:

Σt = s2tΣ,

where st, for t = 1, . . . , T , are latent variables to be estimated. To model the extreme

volatility at the onset of the COVID-19 pandemic, the standard deviations of the shocks

in March 2020 are scaled by an unknown parameter s̄0; similarly for April and May 2020,

with two additional parameters s̄1 and s̄2. Afterward, the volatility is assumed to decay

at a constant rate ρ. To summarize, we have

st∗ = s̄0, st∗+1 = s̄1, st∗+2 = s̄2, st∗+j = 1 + (s̄2 − 1)ρj−2, j = 3, . . . , T.

This modeling approach is similar to the common stochastic volatility model introduced

by Carriero et al. (2016), where the error covariance matrix is scaled by a common, time-

varying factor representing the overall macroeconomic volatility. The main difference is

that here st does not follow a stochastic process, but is a deterministic function of a few

parameters.

Compared to other outlier adjustments, this specification is more restrictive due to the

constant proportionality, as it effectively models the comovements in the error variances

using a shared volatility factor. But it is more parsimonious, and might work particularly

well for the COVID-19 outliers, where the timing of their occurrences is known. In

addition, it allows for persistent changes in volatility after the onset of the pandemic. We

refer to this model with a common volatility and a deterministic break VAR-CVD.

In our application of modeling COVID-19 outliers, it is reasonable to assume that the

break date t∗ is known. For other applications where a breakdate, or even the presence

of a break, is unclear, one could first test for the presence of a break (and its timing)

in the covariance structure in a preliminary step. There are a few tests in the literature

that are suitable for this purpose; an example is Aue et al. (2009).
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2.3 Data-Driven Minnesota Priors

We now provide an overview of the priors on the VAR coefficients. Details of priors on

other parameters are available in Appendix A. In general, we assume the same priors on

the common parameters across models. When it is not applicable, we opt for analogous

priors, thereby ensuring comparability among models.

In high-dimensional settings such as large VARs, it is important to impose shrinkage priors

to avoid overfitting. There is a vast literature on shrinkage priors for Bayesian VARs.

Commonly-used priors include the Minnesota priors (Litterman, 1986; Doan et al., 1984;

Giannone et al., 2015; Chan, 2021), the normal-gamma prior (Griffin and Brown, 2010;

Huber and Feldkircher, 2019), the horseshoe prior (Follett and Yu, 2019) and the SSVS

prior (George et al., 2008). These priors are useful for variable selection and improving

forecasting performance in large VARs.

Among these shrinkage priors, the Minnesota priors stands out as the most prominent,

primarily due to its ease of use and remarkable performance in forecasting applications.3

We use a version that has two useful features. First, it incorporates cross-variable shrink-

age, i.e., the prior belief that the coefficients on other variables’ lags are on average

smaller than those on own lags. This feature has been shown to improve forecasting per-

formance; see, e.g., Carriero et al. (2015), Cross et al. (2020) and Chan (2021). Second,

the hyperparameters that control the overall shrinkage strength are estimated from the

data rather than being set at some subjective values. This adaptive feature has been

consistently shown to yield better forecasting results, as demonstrated in a growing body

of empirical works such as Giannone et al. (2015), Amir-Ahmadi et al. (2020) and Chan

(2023).

Specifically, let αi = (ai,0,Ai,1, . . . ,Ai,p)
′ denote the intercept and coefficients in the i-th

equation, where Ai,j is the i-th row of Aj, for i = 1, . . . , n. Consider the hierarchical

normal prior of the form αi ∼ N (0,Vαi
). The prior covariance matrix Vαi

is assumed to

be diagonal and it depends on two hyperparameters: κ1 and κ2. The former controls the

shrinkage strength on coefficients associated with own lags, whereas the latter controls

those on lags of other variables. See Appendix A for details. Similarly, for the free

3For a more detailed discussion about the Minnesota priors, see, e.g., Koop et al. (2010), Karlsson
(2013) and Chan (2020b).

9



elements in the i-th row of the impact matrix B0, denoted as βi, i = 2, . . . , n, we assume

that βi has a hierarchical normal prior: βi ∼ N (0,Vβi
), where Vβi

is a diagonal matrix

and it depends on a hyperparameter κ3. The hyperparameters κ1, κ2, and κ3 are treated

as unknown parameters, each with a hierarchical gamma prior.

In this paper we focus on the hierarchical Minnesota prior described above, but other

shrinkage priors, such as the class of global-local shrinkage priors (e.g., Huber and Feld-

kircher, 2019; Cross et al., 2019; Kastner and Huber, 2020; Chan, 2021; Gruber and

Kastner, 2025), can also be used. Specifically, recent papers such as Gefang et al. (2020,

2023) and Bernardi et al. (2024) have developed variational Bayesian methods for VARs

with global-local shrinkage priors. As we discuss in the next section, one can adapt

these algorithms to obtain the variational density for the model, and then use it as the

importance sampling density to estimate the marginal likelihood.

3 Overview of Variational Bayes

Variational inference has been gaining popularity as a practical approach for conducting

Bayesian inference in situations where the computational demands of MCMC methods

are excessive. It is therefore not surprising that many papers have employed variational

inference in fitting high-dimensional models, such as large VARs (see e.g., Gefang et al.,

2020, 2023; Chan and Yu, 2022; Bernardi et al., 2024), state space models (Loaiza-Maya

et al., 2022; Quiroz et al., 2023), copulas (Loaiza-Maya and Smith, 2019; Smith et al.,

2020; Deng et al., 2024), quantile regressions (Prüser and Huber, 2024) and multinomial

probit models (Loaiza-Maya and Nibbering, 2023). In this section, we outline the basic

theory of the variational Bayes approach; Blei et al. (2017) provides a recent review of

variational inference.

3.1 The Approximate Inference and Variational Lower Bound

The key idea of variational inference is to approximate the posterior distribution by

a probability distribution with density q(θ) which belongs to some tractable family of

distributions Q, such as Gaussians. The best variational approximation q∗ ∈ Q is found

by minimizing a certain measure of how the approximating density q is different from the
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target p(θ |y).

The most common type of variational inference is known as variational Bayes (VB) which

uses the Kullback-Leibler divergence (KL-divergence) as the choice of dissimilarity func-

tion. This specific choice makes the minimization tractable. The KL-divergence of ap-

proximating density q(θ) from the posterior distribution p(θ |y) is defined as

KL(q||p( · |y)) =
∫
q(θ) log

q(θ)

p(θ |y)
dθ,

and the best VB approximation q∗ ∈ Q can therefore be obtained by minimizing the

KL-divergence

q∗ = argmin
q∈Q

{KL(q||p( · |y))} .

It is easy to see that KL(q||p( · |y) can be rewritten as

KL(q||p( · |y) = Eq [log q(θ)]− Eq [log p(θ |y)]

= Eq [log q(θ)]− Eq [log p(θ,y)] + log p(y).
(4)

From (4), it is not hard to see that minimizing KL(q||p( · |y)) is equivalent to maximizing

the following function

VLB(q) = Eq [log p(θ,y)]− Eq [log q(θ)] , (5)

which is called variational lower bound (VLB), also known as evidence lower bound. To

see the intuition behind the VLB, first notice that

VLB(q) = Eq [log p(y|θ)]−KL(q(θ)||p(θ)) (6)

= log p(y)−KL(q(θ||p(θ |y)) (7)

Equation (6) illustrates the principle that maximizing the VLB involves prioritizing den-

sities that not only accurately capture the observed data but also remain closely aligned

with the priors. Further, Equation (7) establishes the VLB as an actual lower bound

on the log marginal density since the KL divergence is non-negative (KL( · ) ⩾ 0). This

intrinsic relationship between the VLB and the log marginal density renders the VLB a

useful criterion for model selection.
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3.2 Mean-Field Variational Bayes

Without any constraint on the density family Q, the best approximating density q∗ is

nothing but the posterior distribution p(θ |y). However, in order for this problem to

be tractable, we need to impose some constraint(s) on the family Q. The most com-

monly used constraint is assuming that all the parameters in the vector θ are mutually

independent and each governed by a distinct factor in the variational density

q(θ) = ΠK
j=1qj(θj). (8)

Each density qj( · ), j = 1, . . . , K, is then chosen to maximize the VLB of equation (5).

The variational family used in this context is referred to as the mean-field variational

family, and the corresponding approach is known as mean-field variational Bayes. There

is a growing body of literature on expanding the variational family, including structured

variational inference that permits dependencies among the variables (see, e.g., Barber and

Wiegerinck, 1998; Hoffman and Blei, 2015), adaptive variational inference that adaptively

adjust the variational family as needed during the optimization process to better fit the

posterior (see, e.g., Ranganath et al., 2016), normalizing flows that transform the base dis-

tribution into a more complicated distribution using a series of invertible transformations

(see, e.g., Rezende and Mohamed, 2015), variational Rényi inference that extends the

traditional variational inference by minimizing the Rényi divergence between the approx-

imate and the posteriors rather than the KL-divergence (see, e.g., Li and Turner, 2016), to

name a few. These methods can potentially improve the approximation, but they usually

come with a more difficult-to-solve variational optimization problem. For this reason, we

focus on mean-field variational Bayes. In addition, to handle the high-dimensional latent

variables in the stochastic volatility models, we adapt the global approximation of the

joint distribution of the latent states proposed in Chan and Yu (2022)—which is shown

to be fast to obtain and more accurate than alternatives—to our reduced-form VARs.

Appendix A contains the estimation details.
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3.3 The Optimization Algorithm

A common approach to locate the maximizer q(θ) of the variational lower bound (VLB)

in (5) is to use the coordinate ascent algorithm. This is often called coordinate ascent

variational inference (CAVI) in the literature (See, e.g., Ormerod and Wand, 2010; Blei

et al., 2017).4 Using the mean-field variational density of the form in (8), CAVI iteratively

optimizes each component density qj(·), j = 1, . . . , K, while holding all other components

fixed. This process is terminated when the VLB has converged (e.g., if the change of

the VLB in consecutive iterations is smaller than a pre-fixed tolerance level tol.) We

summarize the steps of CAVI in Algorithm 1.

Algorithm 1: Coordinate Ascent Variational Inference

Input: The target density p(θ |y) ∝ p(θ,y) and a tolerance level tol.

Output: A variational density q∗(θ) =
∏K

j=1 q
∗
j (θj) and a local maximal

variational lower bound vlb.

Initialize: The parameter blocks qj(θj), j = 1, . . . , K.

while vlb has not converged do

for j ∈ {1, . . . , K} do
Set qj(θj) ∝ exp{E−j[log p(θj |θ−j,y)]}, where the expectation is taken

with respect to the density q−j(θ−j) = Πi ̸=jqi(θi).

end

Compute vlb(q) = Eq[log p(θ,y)− log q(θ)]

end

return q(θ), vlb

As an example, we briefly outline how one can apply Algorithm 1 to obtain the varia-

tional density q(θ) for the model of Cogley and Sargent (2005) described in Section 2.1.

We provide the details in Appendix A. To that end, define hi = (hi,1, . . . , hi,T )
′ and

αi = (ai,0,Ai,1, . . . ,Ai,p)
′ to be the intercept and coefficients in the i-th equation for

i = 1, . . . , n. Let βi denote the free elements in the i-th row of the impact matrix B0

for i = 2, . . . , n. Next, we stack h = (h′
1, . . . ,h

′
n)

′ and α = (α′
1, . . . ,α

′
n)

′. Similarly, we

define βi = (β1, . . . , βi−1)
′, β = (β′

2, . . . ,β
′
n)

′, σ2 = (σ2
1, . . . , σ

2
n)

′,h0 = (h1,0, . . . , hn,0)
′

and κ = (κ1, κ2, κ3)
′. This model has 6 parameter blocks and we approximate the joint

4Another popular approach is the class of gradient-based algorithms that iteratively maximize the
VLB using the gradient of the log posterior density. A prominent example is the natural gradient
algorithm developed in Hoffman et al. (2013).
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posterior density p(α,β,h,h0,σ
2,κ |y) using

q(α,β,h,h0,σ
2,κ) = q(κ)

n∏
i=1

q(αi,βi,hi, hi,0, σ
2
i )

= q(κ)
n∏

i=1

q(αi)q(βi)q(hi)q(hi,0)q(σ
2
i ),

where we suppress the subscripts in the product densities for clarity. After initialization,

we update the density for each parameter block sequentially while holding all other den-

sities fixed. For example, one can show that q(αi) is a Gaussian density with mean vector

and precision (or inverse covariance) matrix in closed-form. We provide the derivations

for q(αi) and all other component densities in Appendix A. This process is repeated until

the variational lower bound has converged. Estimation details of other models are also

detailed in Appendix A.

4 Model Selection Using the Marginal Likelihood

When multiple models are available and they are high-dimensional and nonlinear, a major

challenge for practitioners is the lack of adequate tools for comparing these models. In this

section, we develop an effective approach to conduct model comparison in these complex

settings. To that end, we first provide some background on the marginal likelihood and

its significance in Bayesian model comparison. Subsequently, we demonstrate how one

can obtain a marginal likelihood estimator through the fusion of variational Bayes and

importance sampling. Lastly, we illustrate how the proposed approach works and conduct

a comparison of the estimates generated by our method with those of two closely-related

alternatives in the context of a linear regression with a closed-form marginal likelihood.

4.1 Overview of the Marginal Likelihood

One advantage of employing the Bayesian approach is the ability to compare models using

the Bayes factor, which is defined as the ratio of the marginal likelihoods of two competing

models. Suppose we want to compare K models {M1, . . . ,MK}, where each model Mk is

defined by a likelihood function p(y |θk,Mk) and a prior on the model specific parameter
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vector θk denoted by p(θk |Mk). The Bayes factor in favor of Mi, against Mj is defined

as

BFi,j =
p(y |Mi)

p(y |Mj)
,

where p(y |Mk) is the marginal likelihood under model Mk, k = i, j, computed by

p(y |Mk) =

∫
θk

p(y |θk)p(θk)dθk. (9)

In practice, if BFij = 100, then model Mi is 100 times more likely than model Mj given

the data. For a textbook treatment of the Bayes factor and its role in Bayesian model

comparison, see Chan et al. (2019).

One advantage of using the marginal likelihood in a high-dimensional setting is that

it contains a “penalty” for model complexity. This ensures that the marginal likelihood

naturally prefers simpler models that adequately explain the data over more complex ones,

unless the additional complexity significantly increases the model’s explanatory power.

This “penalty” comes into play in two main ways. First, for models with more parameters,

the prior distribution p(θk) tends to be spread over a larger parameter space. Unless there

is strong prior information that tightly constrains the parameters, this spreading means

that any specific set of parameter values is generally less likely a priori, reducing the

marginal likelihood for complex models with more parameters, assuming the prior is

properly normalized. Second, in a high-dimensional setting, a model may fit the training

data better (higher likelihood), but this does not necessarily translate to a better marginal

likelihood. The integral over all parameters averages the likelihood over all possible

parameter values, not just the best-fitting ones. If adding more parameters only improves

the fit by capturing noise rather than genuine data patterns, this improvement will not

significantly enhance the marginal likelihood. Thus, the process inherently penalizes

over-fitting.

While the Bayes factor is conceptually straightforward, its computation can be chal-

lenging, particularly when dealing with high-dimensional, non-nested models. This is

because calculating the marginal likelihood in equation (9) involves integrating the like-

lihood function with respect to the prior distribution of the parameters. Therefore, the

computational burden of computing the marginal likelihood scales with the dimension of

the parameter space.
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An extensive literature exists on estimating the marginal likelihood using MCMC meth-

ods. For instance, important advances include Gelfand and Dey (1994), Newton and

Raftery (1994), Chib (1995), Chib and Jeliazkov (2001), Frühwirth-Schnatter and Wag-

ner (2008), Friel and Pettitt (2008), Li et al. (2023), among many others. While these

models are widely used in practice, they are computationally infeasible for computing the

marginal likelihoods of large VARs with stochastic volatility due to the large number of

VAR coefficients and latent variables.

As a computationally feasible alternative, we develop model comparison tools based on the

variational approximation of the posterior distribution. Earlier works have investigated if

the variational lower bound can be used as a model selection criterion; examples include

McGrory and Titterington (2007) for mixture models, Bernardo et al. (2003) for models

with incomplete data and Penny (2012) for general linear models and dynamic causal

models. In addition, Hajargasht and Woźniak (2020) use the variational approximation

in conjunction with the modified harmonic mean estimator of Geweke (1999) to compute

the marginal likelihoods of homoskedastic VARs with different shrinkage priors. We

further develop this line of research by focusing on large VARs with stochastic volatility.

In addition, we consider an importance sampling estimator based on the variational

approximation. This is motivated by the observation that the optimal density obtained

by minimizing the Kullback-Leibler divergence from the posterior distribution can serve

as a convenient choice for the importance sampling density.

4.2 Variational Importance Sampling

Let θ denote the parameters of interest, p(y |θ) denote the posterior distribution, and

q(θ) denote the importance densities. Note that we can rewrite equation (9) as the

expectation of [p(y |θ)p(θ)/q(θ)] with respect to the importance sampling density, as

shown in equation (10)

p(y) =

∫
p(y |θ)p(θ)dθ

=

∫
p(y |θ)p(θ)

q(θ)
q(θ)dθ

= Eq

[
p(y |θ)p(θ)

q(θ)

]
.

. (10)
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The importance sampling estimator can therefore be obtained from

p̂IS(y) =
1

M

M∑
m=1

p
(
y |θ(m)

)
p
(
θ(m)

)
q
(
θ(m)

) , (11)

where θ1, . . . ,θM areM independent draws obtained from the importance sampling den-

sity g( · ) that dominates p(y | · )p( · ), i.e., q(x) = 0 ⇒ p(y |x)p(x) = 0.

The estimator in (11) is unbiased and simulation consistent for any density q that domi-

nates p(y | · )p( · ). However, in practice, the performance of this estimator depends heav-

ily on the choice of the importance sampling density. Chan and Eisenstat (2015) used

the cross-entropy method to obtain the “best” importance sampling density by choosing

the optimal parameters in a parametric family that minimizes the Kullback-Leibler di-

vergence between the posterior density and the importance sampling density. This was

later used in Chan (2023) to compare different specifications of stochastic volatility in

VARs. Both approaches, however, rely on MCMC draws, which are costly to obtain in

very high-dimensional settings.

Instead, here we obtain the densities that minimize the Kullback-Leibler divergence using

the variational Bayes approach, without relying on MCMC draws. We call this method

variational importance sampling (VIS). The algorithm is summarized in Algorithm 2.

More details on how this algorithm can be applied to various VARs are provided in

Appendix B.

Algorithm 2: Variational Importance Sampling

Input: The optimal density q∗(θ), prior density p(θ), dataset y, sample size M

Output: Logarithm of the estimate of marginal likelihood for the data y: log p̂IS

for i=1 to M do

Draw θ̃
(i)

∼ q∗(θ)

Compute log p̂
(i)
IS = log p

(
y | θ̃

(i)
)
+ log p

(
θ̃
(i)
)
− log q∗

(
θ̃
(i)
)

end

Compute log p̂IS = log
(
1/M

∑M
i=1 exp

(
log p̂

(i)
IS

))
return log p̂IS

It is noteworthy that in the adaptive importance sampling based on cross-entropy method
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(CEAIS) proposed in Chan and Eisenstat (2015), the Kullback-Leibler divergence is the

divergence of the posterior distribution p(θ |y) from the importance sampling density

q(θ), whereas in the variational Bayes, it is the divergence of the approximating den-

sity q(θ) from the posterior distribution p(θ |y). These two quantities are not equal

because the Kullback-Leibler divergence is not symmetric, i.e., KL(p(θ |y)||q(θ)) ̸=
KL(q(θ)||p(θ |y)). Nevertheless, in many applications, such as the illustration in the

following section, these two approaches give similar estimates, suggesting that both are

accurate approximations of the posterior distribution.

One important concern of using the optimal density obtained from the variational Bayes

approach as the importance sampling density is that it tends to under-represent the vari-

ance of the posterior density. This is a common effect in mean-field variational inference;

see Blei et al. (2017) for details. This could be problematic for importance sampling,

because for the estimator in (11) to work well, the variance of the importance sampling

weights should be finite. Checking this requirement is often possible in simple problems,

but it is difficult in high-dimensional settings. To ensure that this finite-variance con-

dition holds, one strategy is to implement the so-called defensive importance sampling

(DIS) proposed by Hesterberg (1995). Specifically, instead of directly using the original

importance sampling density q(θ), one puts some weight γ ∈ (0, 1) on the prior p(θ) and

uses the mixture

qγ(θ) = γp(θ) + (1− γ)q(θ),

as the importance sampling density. One can then show that the weight function w(θ) =

p(θ)/qγ(θ) is bounded by 1/γ, and therefore the variance of the importance sampling

weights is finite.

4.3 Illustration: Linear Regression with a Closed-FormMarginal

Likelihood

We consider a simple example of the linear regression to illustrate how the algorithm

works in high-dimensional settings. In particular, consider the following linear regression

y = Xβ + ε, ε ∼ N (0, σ2In),

18



where y = (y1, . . . , yn)
′, X = (x1, . . . ,xk), xj = (x1j, . . . , xnj)

′, j = 1, . . . , k, β =

(β1, . . . , βk)
′, ε = (ε1, . . . , εn)

′. We assume the following natural conjugate prior

(β |σ2) ∼ N (0, σ2Λ−1
0 ), σ2 ∼ IG(ν, S).

The log marginal likelihood is then available in closed-form:

log p(y) = −n
2
log(2π) +

1

2
log det(Λ0)−

1

2
log det(X′X+ Λ0)

+ν log(S)− log Γ(ν) + log Γ(ν̃)− ν̃ log(S̃),

where ν̃ = T
2
+ ν, S̃ = 1

2
(y′y − y′X(X′X+ Λ0)

−1X′y).

In the following Monte Carlo experiments, the data are generated as follows. We set

σ2 = 3 and sample k iid draws for β from the normal distribution: N (0, 0.32). In order

to compare the estimates under different dimensions of parameters, we generate 9 datasets

with different sizes. In the smallest dataset, n = 500, k = 10, and in the largest dataset,

n = 10, 000, k = 200, as shown in Table 1. In terms of the hyperparameters in the priors,

we set S = 10 and ν = 4. When n/k < 100, we set Λ0 = 2.4Ik. Otherwise, we set

Λ0 = 0.3Ik, in order to impose more shrinkage on β when the dimension of parameters

is high. We set γ = 0.05 for the mixture in the DIS method. That is, samples are taken

from the prior density with a probability of 0.05, and from the approximating density

q(θ) with a probability of 0.95.

Table 1 reports the log marginal likelihood estimates using three approaches: the cross-

entropy approach of Chan and Eisenstat (2015) (CEAIS), the defensive importance sam-

pling of Hesterberg (1995) (DIS) and the proposed variational importance sampling (VIS).

It also reports the true log marginal likelihood values (TRUE) computed using the closed-

form formula and the variational lower bounds (VLB). The results show that the esti-

mates from the three methods are identical to the true values for all the datasets, but

their standard errors vary. The DIS may be viewed as a robust implementation of the

VIS—it tends to have a slightly larger variance since a fraction of the samples are taken

from the prior, but its variance is guaranteed to be finite. Since implementing the DIS

version given the VIS estimator is relatively simple, we recommend computing the DIS

as a robustness check. We have experimented with a range of values for γ and values

from 0.001 to 0.1 seem to work well.

19



Table 1: Log marginal likelihood estimates of the linear regression.

(n, k) TRUE CEAIS DIS VIS VLB

(500, 10) −1,013 −1,013 −1,013 −1,013 −1,031

(0.002) (0.003) (0.001)

(500, 20) −1,024 −1,024 −1,024 −1,024 −1,061

(0.002) (0.003) (0.003)

(500, 50) −1,154 −1,154 −1,154 −1,154 −1,246

(0.005) (0.007) (0.004)

(1000, 10) −2,002 −2,002 −2,002 −2,002 −2,020

(0.001) (0.003) (0.001)

(1000, 20) −2,000 −2,000 −2,000 −2,000 −2,036

(0.002) (0.003) (0.002)

(1000, 50) −2,176 −2,176 −2,176 −2,176 −2,268

(0.005) (0.006) (0.002)

(10000, 50) −19,833 −19,833 −19,833 −19,833 −19,925

(0.004) (0.005) (0.002)

(10000, 100) −20,196 −20,196 −20,196 −20,196 −20,380

(0.009) (0.008) (0.001)

(10000, 200) −20,642 −20,642 −20,642 −20,642 −21,010

(0.025) (0.023) (0.002)

This table shows the log marginal likelihood estimates using the three approaches:
the cross-entropy approach of Chan and Eisenstat (2015) (CEAIS), the defensive
importance sampling of Hesterberg (1995) (DIS) and the proposed variational im-
portance sampling (VIS). The standard errors are reported in parenthesis. The
second column reports the true value of the log marginal likelihood (TRUE). The
last column reports the variational lower bounds (VLB).

5 Performance of the VB Algorithm and the Log

Marginal Likelihood Estimator

In this section, we conduct several Monte Carlo experiments to assess the performance of

the variational Bayes (VB) algorithms and the log marginal likelihood estimator. Specif-

ically, in the first subsection, we focus on the comparison of the accuracy of estimates
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and computational burden using VB and MCMC methods. The second subsection then

assesses the capability of the variational importance sampling estimator in correctly iden-

tifying the true models.

5.1 Variational Bayes Vs MCMC: Computational Time and Ac-

curacy

We first evaluate the computational time to fit VAR-SV using VB and MCMC for small

(n = 5), medium (n = 20) and large (n = 50, 100) datasets with T = 300, 500, 1000

observations. Table 2 reports the results. For small and medium datasets, employing

MCMC remains practical. For instance, fitting a 5-variable VAR model with 300 ob-

servations via MCMC can be completed in approximately one minute, yielding 10,000

posterior draws. However, the computational demand escalates significantly with larger

models; a 100-variable VAR model with a sample size of T = 500 necessitates around 20

hours for MCMC estimation. In stark contrast, the VB method requires merely about

3 minutes for the variational bound to converge; see Algorithm 1. This efficiency gains

become particularly advantageous in applications such as macroeconomic forecasting that

involves recursive estimation with an expanding window or model comparison that re-

quires estimation for multiple models.

Next, we compare the estimates from the VB approach against the standard MCMC

approach using the FRED-QD dataset. Specifically, we use the vintage of “2024-02”,

consisting of observations from September 1959 to December 2023. After transforming

the raw data as described in Appendix C and removing the columns with missing values,

we obtain a dataset with 180 variables (n = 180) and 258 observations (T = 258). We

then randomly select 5, 10 and 50 variables (n = 5, 10, 50) and compare the accuracy

of the estimates of VAR coefficients A, impact matrix coefficient B0, and stochastic

volatility using VB and MCMC approaches.
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Table 2: The computational time (in seconds) to fit an n-variable VAR-SV with a sample
size T using MCMC (to obtain 10,000 posterior draws) and VB (to converge). All VARs
have p = 4 lags.

T n MCMC VB

300 5 64.5 0.3

20 280.9 1.1

50 2,735.5 12.9

100 16,692.3 89.1

500 5 73.2 0.5

20 301.3 1.6

50 2,864.1 62.5

100 74,466.2 199.4

1000 5 142.3 1.3

20 505.4 3.2

50 5,212.0 31.9

100 94,636.6 388.2

Figure 1 reports a scatter plot comparing the estimates of the VAR coefficients (A)

obtained via VB and MCMC methods. Similarly, Figure 2 displays the comparison of

the estimates of the impact matrix coefficients (B0). These figures demonstrate that the

posterior means derived from the VB and MCMC methods are nearly indistinguishable.

While there are instances of slight discrepancies, the estimates are very similar.

In Figure 3, we compare the estimates of stochastic volatility using VB and MCMC. For

better presentation, we used the results from a VAR that consists of 5 key macroeconomic

variables: real GDP, personal consumption expenditures, real private fixed investment,

unemployment rate, and CPI. Again, estimates of stochastic volatility from VB and

MCMC are quite similar.
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Figure 1: Scatter plots of the estimates of the VAR coefficients from VB and MCMC.
The dashed red line is the 45-degree line.

Figure 2: Scatter plots of the estimates of the impact matrix coefficients from VB and
MCMC. The dashed red line is the 45-degree line.
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Figure 3: Estimates of the stochastic volatility from VB (blue line) and MCMC (red
line).

Furthermore, we also compare the posterior standard deviations of the VAR coefficients

and stochastic volatility obtained from the VB and MCMC methods; details are provided

in Appendix D. Compared to the posterior means, estimates of the posterior standard

deviations show more instances of discrepancies. But overall the two methods generally

provide rather similar estimates.

A potential cost of using VB instead of MCMC is that it is less flexible in matching higher

moments of the posterior distributions due to the typical choice of using standard densi-

24



ties for approximation. For example, in our implementation, the component variational

density for the VAR coefficients is selected within the class of normal densities. As such,

the skewness of the VAR coefficients from VB is zero by construction. This limitation can

be relaxed, e.g., by using a more flexible family of densities such as skew-normal densities.

But this comes at a higher computational cost when one obtains the variational density.

5.2 Can the VIS Estimator Identify the Correct Models?

Next, we delve into the question of whether we can distinguish the four VARs with

stochastic volatility, namely, VAR-SV, VAR-SVO, VAR-SVt, and VAR-CVD, using the

variational importance sampling estimator of the marginal likelihood. To that end, we

generate 100 datasets from each of the four models. Each dataset consists of n = 20

variables, T = 600 observations and p = 2 lags. We generate the intercepts from U(−1, 1).

The free elements in the impact matrix are iid N (0, 0.52). The diagonal elements of

the first VAR coefficient matrix are iid U(−0.2, 0.4) and the off-diagonal elements are

U(−0.2, 0.2); all elements of the j-th VAR coefficient matrix are iid N (0, 0.1/j2), j =

1, . . . , p.

For VAR-SVO, the outlier parameter oi,t is assigned the value of 1 with a probability

15/16, and is randomly drawn from a discrete uniform distribution from 2 to 9 with

probability 1/16. For VAR-SVt, the parameter q2i,t is drawn from inverse gamma distri-

bution: IG(2, 2), for i = 1, . . . , n, and t = 1, . . . , T . The log-volatility hi,t is set to be a

random walk process with initial condition hi,0 = 0 and variance σ2
i = 0.12.

For VAR-CVD, we specify ρ = 0.8, s̄0 = 15, s̄1 = 70, and s̄2 = 20. These values closely

approximate the estimates provided in Lenza and Primiceri (2022). In addition, We set

t∗ = 80, and Σ is randomly drawn from an inverse-Wishart distribution with a mean of

5In, where In represents the identity matrix of size n.

In the first experiment, we generate 100 datasets from VAR-SV. For each dataset, we

then compute the log marginal likelihoods of VAR-SVO, VAR-SVt and VAR-CVD and

compare them to that of the true model VAR-SV. More precisely, we subtract the log

marginal likelihood of the latter model from those of VAR-SVO, VAR-SVt and VAR-

CVD. Given that a model is preferred by the data if it has a larger log marginal likelihood

value, a negative difference implies that the correct model is favored. The left panel of
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Figure 4 shows that for all the datasets, the correct model VAR-SV is preferred.

Figure 4: Left panel: Boxplots of log marginal likelihoods under VAR-SVO (left), VAR-
SVt (middle) and VAR-CVD (right) relative to the true model (VAR-SV). Right panel:
Boxplots of log marginal likelihoods under VAR-SV (left), VAR-SVt (middle) and VAR-
CVD (right) relative to the true model (VAR-SVO). A negative value indicates that the
correct model is favored.

It is interesting to observe that employing a common volatility model like VAR-CVD

results in a markedly larger difference in the log marginal likelihood values, when the

true model is a more flexible specification such as VAR-SV, VAR-SVO, or VAR-SVt. For

example, when the true model is VAR-SV, the mean differences in log marginal likelihood

for VAR-SVO and VAR-SVt are, respectively, approximately −115 and −266, relative to

VAR-SV. In contrast, the corresponding value for VAR-CVD is around −1, 973. These

results show that there is a strikingly larger penalty for underfitting than overfitting. In

addition, they also confirm that the marginal likelihood has a built-in penalty for model

complexity, and more flexible models are not always preferred if the additional features

do not substantially improve model-fit.

Next, we generate 100 datasets from VAR-SVO, and for each dataset we compute the log

marginal likelihoods of VAR-SV, VAR-SVt and VAR-CVD relative to that of the true

model. The results are shown in the right panel of Figure 4. Again, the correct model

VAR-SVO is favored for all datasets. In the third and fourth experiments, we generate

100 datasets from VAR-SVt and VAR-CVD, respectively, and compute the log marginal

likelihoods of the other three specifications relative to that of the true model. The results
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are shown in Figure 5. When the true model is VAR-CVD, the correct model is preferred

by the data in all 100 datasets. When the true model is VAR-SVt, the VAR-SV model is

selected in 1 out of 100 cases, and the VAR-SVO model is selected in 6 cases. This level

of selection error is within the range of what can be expected due to sampling variability.

Figure 5: Left panel: Boxplots of log marginal likelihoods under VAR-SV (left), VAR-
SVO (middle) and VAR-CVD (right) relative to the true model (VAR-SVt). Right panel:
Boxplots of log marginal likelihoods under VAR-SV (left), VAR-SVO (middle) and VAR-
SVt (right) relative to the true model (VAR-CVD). A negative value indicates that the
correct model is favored.

6 Empirical Application

We demonstrate the proposed methodology using an empirical application that com-

pares different stochastic volatility specifications and outlier components in the context

of Bayesian VARs.

6.1 Datasets

We employ two datasets of different sizes in this application. The first dataset is the

same as that in Carriero et al. (2022b), which consists of 16 monthly variables, including

real income, real consumption, industrial production, and inflation indexes. The list of

the variables and their transformations are outlined in Appendix C. This dataset covers
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the period from March 1959 to March 2021. We include p = 12 lags in the VARs to fit

this monthly dataset. Taking the first 12 observations as the initial values, we use the

remaining 733 observations for estimation.

The second dataset is constructed from the FRED-QD database at the Federal Reserve

Bank of St. Louis. We use the “2024-02” vintage, spanning from September 1959 to

December 2023 with 258 observations. Only variables with complete data for the entire

sample period are selected. The first 8 observations serve as initial values, culminating

in a dataset of dimension 180 × 250. The raw data is transformed based on the code

provided by McCracken and Ng (2020). The VARs for this quarterly dataset incorporate

p = 4 lags. Further details of the dataset are provided in Appendix C.

6.2 Model Comparison Results

We compare a variety of VARs with different stochastic volatility and outlier specifications

using the two datasets described above. More specifically, we consider a VAR with

the stochastic volatility model (VAR-SV) of Cogley and Sargent (2005), the outlier-

augmented version (VAR-SVO) developed in Carriero et al. (2022b), a variant with the

Student-t innovations (VAR-SVt) and the common volatility model with a deterministic

break date (VAR-CVD) proposed in Lenza and Primiceri (2022). As a benchmark, we

also include a standard homoskedastic VAR.

Table 3 reports the log marginal likelihood estimates alongside the variational lower

bounds of the five VARs across the two model dimensions.5 It is evident that the models

incorporating any form of stochastic volatility are decidedly favored over the standard ho-

moskedastic VAR for both datasets. For instance, the difference between the log marginal

likelihoods of VAR-SV and the homoskedastic VAR is 2,941 for the 16-variable dataset,

highlighting overwhelming preference for the stochastic volatility model. This finding is

consistent with the growing body of evidence that underscores the importance of time-

varying volatility in fitting both medium and large macroeconomic datasets.

5We have also implemented the defensive importance sampling (DIS) version of these estimates with
γ = 0.05, and the results are similar. In addition, we have tested for finite variance using the test of
Monahan (1993, 2011) that is based on the Hill estimator (Hill, 1975); see also Koopman et al. (2009).
But we are unable to reject the null hypothesis of infinite variance, even though the DIS is guaranteed
to have finite variance.
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Table 3: Log marginal likelihood estimates (numerical standard errors) and variational
lower bounds of a standard homoskedastic VAR, VAR-SV, VAR-SVO, VAR-SVt, and
VAR-CVD for the full sample.

VAR VAR-SV VAR-SVO VAR-SVt VAR-CVD

16 variables
Log-ML

−20,523 −17,582 −17,575 −17,677 −19,236

(0.7) (0.8) (0.8) (1.1) (0.5)

VLB −20,541 −17,625 −17,620 −17,743 −19,257

180 variables
Log-ML

140923 199,943 199,306 198,388 174,914

(4.8) (3.8) (3.4) (4.8) (3.35)

VLB 140689 199,699 199,060 198,076 174,760

In addition, the common volatility model VAR-CVD is outperformed by the three stochas-

tic volatility models for both datasets. For example, the log marginal likelihood difference

between VAR-SV and VAR-CVD is 1,654 for the 16-variable dataset, and this difference

increases to 25,029 for the 180-variable dataset. This suggests that the common volatility

assumption might be too restrictive. Another possibility is that time-varying volatility is

important throughout the sample, not only after the onset of the COVID-19 pandemic

(recall that VAR-CVD assumes homoskedastic errors before the known volatility break).

Among the VARs featuring stochastic volatility, the 16-variable dataset shows a slight

preference for VAR-SVO, suggesting that the outlier component enhances model-fit rela-

tive to the increase in model complexity. However, for the 180-variable dataset, VAR-SV

has a higher log marginal likelihood. This could be attributed to several differences be-

tween the two datasets. First, outlier adjustments may offer significant benefits in smaller

datasets, yet their marginal contributions can diminish in larger datasets as only a small

subset of variables experience extreme movements. Second, the 16-variable dataset—

which is the same as that used in Carriero et al. (2022b)—is in monthly frequency,

whereas the 180-variable dataset is in quarterly frequency. And monthly variables are

expected to have more outliers than their quarterly averages.

To investigate if any of these two differences can explain our finding, we first estimate

a version of the 180-variable VAR where only the equations for the 16 variables have

the outlier components. It turns out that this restricted version has a larger marginal

likelihood compared to the VAR-SVO where all equations have the outlier components,
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but its marginal likelihood is still smaller than the more restricted VAR-SV where there

are no outlier components. Next, we convert the 16 monthly variables to quarterly

frequency by averaging the values within a quarter. Model comparison result for this

transformed 16-variables dataset is similar to that of the 180-variable dataset: the VAR-

SV has a larger marginal likelihood than the VAR-SVO. Our finding thus suggests that

higher frequency variables are more likely to experience extreme movements and outlier

adjustments are expected to be more beneficial.

6.3 Results for Additional Models and Variants

In this section we provide additional model comparison results with an expanded set of

VARs with stochastic volatility and using different sample periods.

6.3.1 VARs with a Stationary Log Volatility Process

For all the VARs with stochastic volatility, the log volatility process is specified as a ran-

dom walk in (3), as it is the most widely used specification in empirical macroeconomics

(e.g., Cogley and Sargent, 2005; Primiceri, 2005; Carriero et al., 2019). To illustrate the

flexibility of the proposed approach, we consider a version of VAR-SV in which the log

volatility is specified as the following stationary AR(1):

hi,t = µi + ρi(hi,t−1 − µi) + uhi,t, uhi,t ∼ N (0, σ2
i ) (12)

for t = 2, . . . , T, and hi,1 is initialized as shi,1 ∼ N (µi, σ
2
i /(1 − ρ2i )). We restrict |ρi| < 1

so that the process is stationary. This stochastic volatility model is referred to as VAR-

ARSV. One can easily modify the algorithm for obtaining the variational density for

VAR-SV to get that for VAR-ARSV; see Appendix A for details.

Using the variational density for VAR-ARSV as the importance sampling density, we

compute the marginal likelihood of VAR-ARSV using Algorithm 2. For the dataset with

16 variables, the log marginal likelihood of VAR-ARSV is slightly larger than that of

the benchmark VAR-SV (−17,389 for VAR-ARSV vs −17,582 for VAR-SV). But for the

dataset with 180 variables, the VAR-SV is preferred by the data (199,693 for VAR-ARSV

vs 199,943 for VAR-SV). More importantly, using the AR(1) log volatility process does
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not change the rankings of the competing models.

6.3.2 Model Comparison Results for Pre-COVID-19 Samples

One main goal of this paper is to investigate the types of time-varying volatility and outlier

specifications most suitable for datasets that include the extreme COVID-19 observations.

But the same methodology can be used to select a suitable model for any sample period.

To demonstrate this point, we conduct a model comparison exercise using the two datasets

with the sample period ending in 2019Q4. The results are reported in Table 4. Consistent

with the full sample results, all the VARs with stochastic volatility are overwhelmingly

preferred compared to the homoskedastic version. For example, the difference in log

marginal likelihoods between VAR-SV and VAR is over 1,600 for the 16-variable dataset.

However, in contrast to the full sample for which VAR-SVO is the best model, using

a subsample that excludes the extreme observations during the COVID-19 pandemic

period, VAR-SV without the outlier adjustment performs slightly better than VAR-SVO.

Table 4: Log marginal likelihood estimates (numerical standard errors) and variational
lower bounds of a standard homoskedastic VAR, VAR-SV, VAR-SVO, VAR-SVt and
VAR-ARSV for the sample ending in 2019Q4.

VAR VAR-SV VAR-SVO VAR-SVt VAR-ARSV

16 variables
Log-ML

−18,475 −16,873 −16,939 −16,980 −16,690

(0.7) (0.9) (0.9) (1.0) (0.7)

VLB −18,499 −16,916 −16,984 −17,045 −16,731

180 variables
Log-ML

144,739 192,141 191,535 190,700 191,820

(4.1) (3.3) (3.7) (4.8) (3.6)

VLB 144,515 191,902 191,283 190,391 191,570

6.3.3 Variable Ordering and Order Invariant VARs

It is widely recognized that the VAR-SV of Cogley and Sargent (2005) is not order

invariant due to the lower triangular assumption of B0. For example, Arias et al. (2023)

have recently documented that model estimates and forecasts from VARs based on this

lower triangular assumption can vary widely across different variable orderings. To assess
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the impact of the variable ordering, we perform a similar model comparison exercise

with the reverse order of the 16 and 180 variables. Results for VAR-SV, VAR-SVO and

VAR-SVt are reported in Table 5.

The results show that the log marginal estimates of the models change slightly. For

example, the value for VAR-SV with the original variable ordering increases from−17, 582

to −17,526 with the reverse order. But importantly, the ranking of the models remains

the same (and they are more favored by the data compared to the order invariant models

VAR and VAR-CVD).

Table 5: Log marginal likelihood estimates (numerical standard errors) and variational
lower bounds of VAR-SV, VAR-SVO and VAR-SVt where the variable ordering is re-
versed.

VAR-SV VAR-SVO VAR-SVt

16 variables
Log-ML

−17,526 −17,504 −17,619

(0.7) (1.0) (1.5)

VLB −17,570 −17,549 −17,683

180 variables
Log-ML

202390 201756 200805

(3.6) (3.5) (4.0)

VLB 202141 201518 200503

Instead of using VARs that depend on the order of the variables, one might consider order

invariant VARs, such as the VAR with factor stochastic volatility in Kastner and Huber

(2020) and the order invariant extension of VAR-SV developed in Chan et al. (2024).

Here we consider a class of copula VARs proposed by Tsionas et al. (2022) that are order

invariant.

The basic idea of these copula VARs is to first specify the marginal distributions of the

variables using n univariate autoregressive processes. Then, they are put together using

a copula function that captures the correlation structure among these equations. More

specifically, we consider the following univariate AR(p) specifications (Equation (2.2) in

Tsionas et al. (2022)):

yi,t =

p∑
j=1

αi,jyi,t−j + ui,t = z′i,tαi + ui,t, ui,t = ehi,t/2u∗i,t, u∗i,t ∼ N (0, 1), (13)
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where αi = (αi,0, αi,1, . . . , αi,p)
′, zi,t = (1, yi,t−1, . . . , yi,t−p)

′, and the log-volatility follows

the random walk process:

hi,t = hi,t−1 + uhi,t, uhi,t ∼ N (0, σ2
i ),

for t = 1, . . . , T , and the initial condition hi,0 is specified as hi,0 ∼ N (0, Vhi,0
). Next,

the joint distribution of (u∗1,t, . . . , u
∗
n,t)

′ is modeled using a copula function. In particular,

Tsionas et al. (2022) uses a mixture of Gaussians as the copula function. Here for simplic-

ity we consider a Gaussian copula with an equicorrelation matrix. We refer to this version

as Copula-SV. Similar copula models can be constructed. For example, a homoskedastic

version can be obtained by setting ui,t = σiu
∗
i,t with u

∗
i,t ∼ N (0, 1) in (13). We call this

homoskedastic version simply Copula. We also consider variants where ui,t has an out-

lier component or follows a t distribution (refered to as Copula-SVO and Copula-SVt,

respectively). Model comparison results for these copula models are reported in Table 6.

Table 6: Log marginal likelihood estimates (numerical standard errors) of Copula,
Copula-SV, Copula-SVO and Copula-SVt

Copula Copula-SV Copula-SVO Copula-SVt

16 variables
−25,162 −20,766 −20,778 −20,794
(0.4) (0.7) (0.7) (0.8)

180 variables
98,177 111,425 111,230 111,161
(1.4) (1.9) (2.2) (2.9)

Similar to our main model comparison results, copula models with stochastic volatility

are overwhelmingly preferred by the data compared to the homoskedastic version. In

addition, both Copula-SV and Copula-SVO generally perform better than Copula-SVt.

One main difference here is that Copula-SV is the best model for both datasets, though

Copula-SVO is a close second in both cases.

7 Concluding Remarks and Future Research

This paper has tackled the problem of model selection in the context of large Bayesian

VARs that account for time-varying volatility and outlier adjustments. We have consid-

ered variational approximations to the joint posterior distributions of these models, along
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with importance sampling estimators for the marginal likelihoods. Our Monte Carlo ex-

periments affirmed that the proposed methodology significantly expedites the estimation

process relative to traditional MCMC approaches, while also being able to identify the

correct models.

The effectiveness and applicability of our approach were further validated through its

application to medium and large VARs with stochastic volatility and outlier adjustments.

The results showed that for both model sizes, incorporating stochastic volatility and

adjustments for outliers generally improves the model-fit. Overall, whether the inclusion

of the outlier component in addition to stochastic volatility is beneficial appears to depend

on the size of the dataset. For the monthly dataset with 16 variables, the inclusion of

outlier adjustments seems to provide benefits, whereas for the quarterly dataset with 180

variables, the benefit is less clear.

In this paper we have focused on VARs and hierarchical shrinkage priors suitable for

stationary time-series. For future research, it would be interesting to expand the scope

to also consider time-series models designed for nonstationary time-series, such as vector

error correction models (Engle and Granger, 1987), especially in settings with potential

outliers (Barigozzi et al., 2024). Efficient MCMC algorithms have been developed for

various vector error correction models (e.g., Strachan and Inder, 2004; Koop et al., 2011),

but model selection in this setting is rarely done. In addition, there is some empirical

evidence suggesting that time-varying parameters are important for modeling macroe-

conomic data in smaller systems, whereas constant VAR coefficients are often sufficient

in larger systems (Feldkircher et al., 2024). For future work, it would therefore be use-

ful to develop similar model comparison techniques for time-varying parameter VARs to

confirm these findings.
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A Online Appendix: Estimation Details

In this appendix, we provide the details of the variational Bayes approximation of the

posterior distribution for the reduced-form VARs with stochastic volatility and outlier

component. As mentioned in Section 2, the hierarchical Minnesota prior is applied.

A.1 Reduced Form Large VARs with Stochastic Volatility

Recall the model

yt = a0 +A1yt−1 + · · ·+Apyt−p + εt, εt ∼ N (0,Σt),

where a Cholesky stochastic volatility is incorporated, i.e., Σ−1
t = B′

0D
−1
t B0, Dt =

diag(eh1,t , ..., ehn,t), and B0 is an n×n lower triangular matrix with ones on the diagonal.

Each element of ht = (h1,t, ..., hn,t)
′ follows a random walk process

hi,t = hi,t−1 + uhi,t, uhi,t ∼ N (0, σ2
i )

for t = 1, 2, ..., T , and the initial condition hi,0 is treated as an unknown parameter to

estimate. Let h0 = (h1,0, ..., hn,0)
′.

Let αi denotes the k× 1 vector that consists of the intercept and VAR coefficients in the

i-th equation, and βi represents the (i− 1)× 1 vector of free elements in the i-th row of

the impact matrix B0. Then, the parameters for the i-th equation are αi, βi, hi,0 and

σ2
i . We adopt a hierarchical Minnesota prior:

(αi|κ) ∼ N (α0,i,Vαi
), (βi|κ) ∼ N (β0.i,Vβi

)

hi,0 ∼ N (0, Vhi,0
), σ2

i ∼ IG(νi, Si),

where κ is a vector of hyperparameters that is described in more detail below. We set

the prior mean for α0,i to 0, in order to shrink the VAR coefficients to zero. For Vαi
, we
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assume it to be diagonal with the k-th diagonal element Vαi,kk set to be

Vαi,kk =


κ1

l2
, for the coefficient on the l-th lag of variable i,

κ2s2i
l2s2j

for the coefficient on the l-th lag of variable j, j ̸= i,

100s2i , for the intercept,

where s2r denotes the sample variance of the residuals from an AR(4) model for the

variable r for r = 1, ..., n. In addition, we set the prior mean vector β0,i to be zero to

shrink the impact matrix to the identity matrix. The prior covariance matrix Vβi
is

assumed to be diagonal, where the j-th diagonal element is set to be κ3s
2
i /s

2
j . Finally,

we treat the shrinkage hyperparameters κ = (κ1, κ2, κ3)
′ as unknown parameters to be

estimated with hierarchical gamma priors κi ∼ G(cj,1, cj,2), j = 1, 2, 3.

Let yi = (yi,1, ..., yi,T )
′ denote the vector of observed values for the i-th variable for

i = 1, ..., n. Similarly we define hi = (hi,1, ..., hi,T )
′. Next, we stack y = (y′

1, ...,y
′
n)

′,

h = (h′
1, ...,h

′
n)

′ and α = (α′
1, ...,α

′
n)

′. Similarly, we define β = (β′
2, ...,β

′
n)

′, σ2 =

(σ2
1, ..., σ

2
n)

′.

In addition, in order to differentiate between the expectation of the inverse of a variable

and the inverse of the expectation of a variable, we use x−1 to denote the former, and

x̄−1 for the latter.

Now, we approximate p(α,β,h,h0,σ
2,κ|y) using the product of densities

q(α,β,h,h0,σ
2,κ) = q(κ)

n∏
i=1

q(αi,βi,hi, hi,0, σ
2
i )

= q(κ)
n∏

i=1

q(αi)q(βi)q(hi)q(hi,0)q(σ
2
i )

In what follows, we derive the explicit forms of each of these optimal marginal densities

and their associated parameters.

The Optimal Density q∗αi

The optimal density q∗αi
has the form

q∗αi
∝ exp

{
E−αi

[
log p(αi|y,α−i,β,h,h0,σ

2,κ)
]}
,
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where the expectation is taken with respect to the marginal density

q−αi
(α−i,β,h,h0,σ

2,κ). α−i denotes the intercepts and VAR coefficients except

for those in the i-th equation.

First, define Ai=0 as a k × n matrix that has exactly the same elements as A =

(a0,A1, ...,Ap)
′, except for the i-th element, which is set to be zero, i.e., Ai=0 =

(α1, ...,αi−1,0,αi+1, ...,αn). Next, let xt = (1,y′
t−1, ...,y

′
t−p)

′ be a 1 × k vector with

k = 1+np. DefineB0,1:n,i as the i-th column ofB0. Further, let z
i = vec((Y−XAi=0)B

′
0),

Wi = B0,1:n,i ⊗X, D = diag(D1, ...,Dn), where each block Di is a diagonal matrix given

by Di = diag(ehi,1 , ..., ehi,T ). Y and X are of dimensions T × n and T × k, respectively.

From Chan (2023), we have

(αi|y,α−i,β,h,h0,σ
2,κ) ∼ N (α̂i,K

−1
αi
),

where α−i = (α′
1, ...,α

′
i−1,α

′
i+1, ...,α

′
n)

′,

Kαi
= V−1

αi
+Wi′D−1Wi, α̂i = K−1

αi
(V−1

αi
α0,i +Wi′D−1zi).

The log-density is therefore

log p(αi|y,α−i,β,h,h0,σ
2,κ) = cαi

− 1

2
α′

iKαi
αi +α′

i(V
−1
αi
α0,i +Wi′D−1zi), (A.14)

where cαi
is a term not dependent on αi. After taking the expectation, we essentially

get an approximating density N ( ¯̂αi, K̂
−1
αi
), where

K̂αi
= E−αi

[Kαi
] = E−αi

[
V−1

αi
+Wi′D−1Wi

]
= E−αi

[
V−1

αi
+ (B′

0,1:n,i ⊗X′)D−1(B0,1:n,i ⊗X)
]

= V−1
αi

+
n∑

j=1

(
B̄2

0,j,i + VB̄0,j,i
X′D̄−1

j X
)

= V−1
αi

+ (B̄′
0,1:n,i ⊗X′)D−1(B̄0,1:n,i ⊗X) + (σ′

B̄0,1:n,i
⊗X′)D−1(σB̄0,1:n,i

⊗X)),

in which σ′
B̄0,1:n,i

is a n× 1 vector stacked by V
1/2

B̄0,j,i
, j = 1, ..., n, B̄0,j,i and VB̄0,j,i

are the
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corresponding mean and variance of the approximating distribution,

¯̂αi = K̂−1
αi
E−αi

[
V−1

αi
α0,i +Wi′D−1zi

]
= K̂−1

αi
E−αi

[
V−1

αi
α0,i + (B′

0,1:n,i ⊗X′)D−1vec((Y −XAi=0)B
′
0)
]

= K̂−1
αi

{
V−1

αi
α0,i + E−αi

[
(B′

0,1:n,i ⊗X′)D−1vec((Y −XAi=0)B
′
0)
]}
,

Note that

Eαi

[
(B′

0,1:n,i ⊗X′)D−1vec((Y −XAi=0)B
′
0)
]

= (B̄′
0,1:n,i ⊗X′)D−1vec((Y −XĀi=0)B̄

′
0) + (1l′n ⊗X′)D−1vec((Y −XĀi=0)Ω

i′),

where Ωi = (Ωi
1, ...,Ω

i
n)

′, in which given m, Ωi
m is a n × 1 vector stores the covariance

between B0,m,i and B0,m,j, j = 1, ..., n, i.e., Ωi
m,j = Cov(B0,m,i, B0,m,j).

In addition, we have

V̄ −1
αi,kk

=


l2κ−1

1 , for the coefficient on the l-th lag of variable i,

l2s2jκ
−1
2

s2i
for the coefficient on the l-th lag of variable j, j ̸= i,

1
100s2i

, for the intercept,

where κ−1
1 = Eq∗(κ1)[κ

−1
1 ], and κ−1

2 = Eq∗(κ2)[κ
−1
2 ].

The Optimal Density q∗βi

The optimal density q∗βi
has the form

q∗βi
∝ exp

{
E−βi

[log p(βi|y,α,hi,κ)]
}

where the expectation is taken with respect to the marginal density q−βi
(α,hi,κ). From

Chan (2023), we know

(βi|y,α,hi,κ) ∼ N
(
β̂i,K

−1
βi

)
,

where

Kβi
= V−1

βi
+ E′

iD
−1
i Ei, β̂i = K−1

βi

(
V−1

βi
β0,i + E′

iD
−1
i εi

)
,

in which εi = (εi,1, ..., εi,T )
′, and Ei = (ε1, ..., εi−1), εi = Eiβi + ηi, and ηi ∼ N (0,Di).
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We can get an approximating density N
(
¯̂
βi, K̂

−1
βi

)
, where

K̂βi
= E−βi

[
V−1

βi
+ E′

iD
−1
i Ei

]
= V−1

βi
+ E−βi

[E′
iD

−1
i Ei],

where

E−βi

[
E′

iD
−1
i Ei] = E−βi

[(S′
i−1Y

′ − S′
i−1A

′X′)D−1
i (YSi−1 −XASi−1)

]
,

in which

E−βi
[S′

i−1A
′X′D−1

i XASi−1] = S′
i−1Ā

′X′D̄−1
i,. XĀSi−1 + S′

i−1GiSi−1.

Note that Si=1 = [Ii−1,O(i−1)×(n−i+1)]
′, which is a selection matrix of dimension n×(i−1).

Gi = diag
(
tr
(
X′D̄−1

i,. XK̂−1
α1

)
, ...tr

(
X′D̄−1

i,. XK̂−1
αn

))
is a diagonal matrix. In addition,

V̄−1
βi,j

= s2jκ
−1
3 /s2i , where κ

−1
3 = Eq∗(κ3)[κ

−1
3 ]. Therefore, we have

K̂βi
= V−1

βi
+ Ē′

iD
−1
i Ēi + S′

i−1GiSi−1

¯̂
βi = K̂−1

βi

(
V−1

βi
β0,i + ĒiD

−1
i ε̄i

)
,

where ε̄i =
(
Y −XĀ

)
ei, and ei is a selection matrix of dimension n× 1, which is a unit

vector with its i-th element being 1.

The Optimal Density q∗κ
The optimal density q∗κ = q∗κ1

q∗κ2
q∗κ3

has the form

q∗κ1
∝ exp {E−κ1 [log p(κ1|α)]} ,

q∗κ2
∝ exp {E−κ1 [log p(κ2|α)]} ,

q∗κ3
∝ exp {E−κ3 [log p(κ3|β)]} .

Define the index set Sκ1 that collects all the indexes (i, j) such that αi,j

is a coefficient associated with an own lag. That is, Sκ1 = {(i, j) :

αi,j is a coefficient associated with an own lag}. Similarly, define Sκ2 as the set that col-

lects all the indexes (i, j) such that αi,j is a coefficient associated with a lag of other
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variables. Lastly, define Sκ3 = {(i, j) : i = 2, ..., n, j = 1, ..., i − 1}. From Chan (2023),

we know

(κ1|α) ∼ GIG

c1,1 − np

2
, 2c1,2,

∑
(i,j)∈Sκ1

(αi,j − α0,i,j)
2

Ci,j

 ,

(κ2|α) ∼ GIG

c2,1 − (n− 1)np

2
, 2c2,2,

∑
(i,j)∈Sκ2

(αi,j − α0,i,j)
2

Ci,j

 ,

(κ3|β) ∼ GIG

c3,1 − n(n− 1)

4
, 2c3,2,

∑
(i,j)∈Sκ3

(βi,j − β0,i,j)
2

C̃i,j

 .

In particular, we have

p(κ1|α) ∝ κ
c1,1−np

2
−1

1 exp

−1

2

2c1,2κ1 + κ−1
1

∑
(i,j)∈Sκ1

(αi,j − α0,i,j)
2

Ci,j


So that

log p(κ1|α) = cκ1 +
(
c1,1 −

np

2
− 1
)
log(κ1)−

1

2

2c1,2κ1 + κ−1
1

∑
(i,j)∈Sκ1

(αi,j − α0,i,j)
2

Ci,j

 ,
where cκ1 is the part that is independent of κ1.

Taking the expectation regarding the parameters other than κ1, and then taking the

exponential form, we obtain q∗(κ1)

q∗(κ1) = exp{E−κ1 [log p(κ1|α)]}

∝ κ
c1,1−np

2
−1

1 exp

−1

2

2c1,2κ1 + κ−1
1

∑
(i,j)∈Sκ1

¯̂α2
i,j + σ̄2

αi,j
− 2α0.i,j

¯̂αi,j + α2
0,i,j

Ci,j

 ,

which is the kernel of a generlized-inverse-Gaussian distribution GIG(vκ1 , aκ1 , bκ1), where

vκ1 = c1,1 −
np

2
, aκ1 = 2c1,2, bκ1 =

∑
(i,j)∈Sκ1

¯̂α2
i,j + σ̄2

αi,j
− 2α0.i,j

¯̂αi,j + α2
0,i,j

Ci,j

.
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Similarly, we can get the approximating densities for κ2 and κ3: GIG(vκr , aκr , bκr), r =

2, 3, where

vκ2 = c2,1 −
(n− 1)np

2
, aκ2 = 2c2,2, bκ2 =

∑
(i,j)∈Sκ2

¯̂α2
i,j + σ̄2

αi,j
− 2α0.i,j

¯̂αi,j + α2
0,i,j

Ci,j

,

vκ3 = c3,1 −
n(n− 1)

4
, aκ3 = 2c3,2, bκ3 =

∑
(i,j)∈Sκ3

¯̂
β2
i,j + σ̄2

βi,j
− 2β0.i,j

¯̂
βi,j + β2

0,i,j

C̃i,j

,

where σ̄2
αi,j

and σ̄2
βi,j

are the corresponding element in K̂−1
αi

and K̂−1
βi
.

It is useful to know that if a random variable x follows a GIG distribution, it has the

following properties

E[x] =
√
b

a

Kv+1(
√
ab)

Kv(
√
ab)

E[1/x] =
√
a

b

Kv+1(
√
ab)

Kv(
√
ab)

− 2v

b

E[log x] = log

(√
b

a

)
+
∂ logKv(

√
ab)

∂v
,

where Kv is a modified Bessel function of the second kind. Note that there is no ana-

lytical solution for ∂ logKv(
√
ab)

∂v
. There are several ways to obtain an approximation for

E[log x]. For example, one can compute it using numerical integration. A pitfall of using

numerical integration is that a proper sequence of support for x needs to be specified in

the beginning. This sequence usually is an arithmetic sequence and a common difference

should also be set. In practice, mis-specifying either the sequence length and the com-

mon difference is prone to induce computational instability. We found that a less costly

and also relatively accurate way is randomly drawing a large sample of x from the GIG
distribution, and taking the average.

Another computational issue is that when ν or
√
ab are extreme values, for example,

n = 180, ν = −64439 and
√
ab = 354.4 in our application, functions from software

such as MATLAB would give infinity as an answer when we are trying to calculate

logKν(
√
ab). To solve this problem, we use the forward recursion algorithm proposed by

Cuingnet (2023) (in Equation (23) and (24)) to compute the logarithm of the modified

Bessel function of the second kind.
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The Optimal Density q∗hi,0

Next, we derive the optimal density q∗hi,0
, which takes the form

q∗hi,0
∝ exp{E−hi,0

[log p(hi,0|hi, σ
2
i ]},

where the expectation is taken with respect to the marginal density q−hi,0
(σ2

i ,hi) =

qσ2
i
(σ2

i )qhi
(hi).

We have

log p(hi,0|y,α,β,hi, σ
2
i ) = log p(hi,0|hi, σ

2
i ) = chi,0

− 1

2σ2
i

(hi,1 − hi,0)
2 − 1

2Vhi,0

h2i,0,

where chi,0
is a constant independent of hi,0. Taking the expectation with respect to the

marginal density q−hi,0
, we have

E−hi,0
[log p(hi,0|hi, σ

2
i )] = chi,0

− 1

2
Eσ2

i

[
1

σ2
i

] [
(ĥi,1 − hi,0)

2 + d̂i,1

]
− 1

2Vhi,0

h2i,0,

where d̂i,1 is the first diagonal element of K̂−1
hi

and the expectation Eσ2
i
is taken with

respect to the density qσ2
i
(σ2

i ) - this expectation can be computed analytically as shown

in the next subsection. Finally, using standard linear regression results, one can show

that q∗hi,0
is a normal distribution: N (ĥhi,0

, K̂−1
hi,0

), where

K̂−1
hi,0

= V −1
hi,0

+ Eσ2
i

[
1

σ2
i

]
, ĥi,0 = K̂−1

hi,0
Eσ2

i

[
1

σ2
i

]
ĥi,1.

The Optimal Density q∗
σ2
i

The kernel of the optimal density q∗
σ2
i
is given by

q∗σ2
i
∝ exp

{
E−σ2

i
[log p(σ2

i |hi, hi,0)]
}
,

where the expectation is taken with respect to the marginal density q−σ2
i
(hi, hi,0) =

qhi,0
(hi,0)qhi

(hi). To derive an explicit expression for q∗
σ2
i
, first note that

log p(σ2
i |hi, hi,0) = cσ2

i
− T

2
log σ2

i −
1

2σ2
i

(hi − hi,01lT )
′H′H(hi − hi,01lT )− νi log σ

2
i −

Si

σ2
i
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where cσ2
i
is a constant not dependent on σ2

i . Taking expectation with respect to the

marginal density q−σ2
i
gives

E−σ2
i
[log p(σ2

i |hi, hi,0)] = cσ2
i
−
(
νi +

T

2

)
log σ2

i −
Si

σ2
i

− 1

2σ2
i

[
(ĥi − ĥi,0)

′H′H(ĥi − ĥi,0) + tr(H′HK̂−1
hi
) + K̂−1

hi,0

]
.

It is clear that on the right-hand side, it is the kernel of an inverse-gamma distribution:

IG(ν̂i, Ŝi), where

ν̂i = νi +
T

2
, Ŝi = Si +

1

2

[
(ĥi − ĥi,0)

′H′H(ĥi − ĥi,0) + tr(H′HK̂−1
hi
) + K̂−1

hi,0

]
.

It is also important to know that the expectation of 1/σ2
i can be obtained analytically as

Eσ2
i

[
1

σ2
i

]
=
ν̂i

Ŝi

.

The Optimal Density q∗hi

The log of the conditional distribution of hi is as follows

log p(hi|yi,α,β, hi,0, σ
2
i ) = chi

− 1

2

T∑
t=1

hi,t −
1

2

T∑
t=1

e−hi,t ε̃2i,t −
1

2σ2
i

T∑
t=1

(hi,t − hi,t−1)
2,

where chi
is a constant not dependent on hi. Taking the expectation with respect to the

marginal density q−hi
(α,β, hi,0, σ

2
i ) gives

E−hi
[log p(hi|yi,α,β, hi,0, σ

2
i )] = chi

− 1

2

T∑
t=1

hi,t −
1

2

T∑
t=1

e−hi,t ŝ2t

− 1

2
Eσ2

i

[
1

σ2
i

]( T∑
t=2

(hi,t − hi,t−1)
2 + (hi,1 − ĥi,0)

2 + K̂−1
hi,0

)
,

where ŝ2t = E−hi
[ε̃i,t] = Eα,β[(e

′
t(Y −XA)B0,i,1:n)

2], et is a vector with its t-th element

being 1. In addition, we have

ŝ2t = (e′t(Y −XĀ)B̄0,i,1:n)
2 + B̄′

0,i,1:nG̃tB̄0,i,1:n + tr
(
(Y −XĀ)′ete

′
t(Y −XĀ)K̂B−1

0,i,1:n

)
,
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where G̃t = diag
(
tr(X′ete

′
tXK̂−1

α1
), ..., tr(X′ete

′
tXK̂−1

αn
)
)
, K̂B0,i,1:n

is an n×n matrix with

its first (i−1)× (i−1) elements being K̂−1
βi

and all other elements being zero. Therefore,

the log kernel of q̃∗hi
has the following expression:

log q̃∗hi
= chi

− 1

2

T∑
t=1

hi,t −
1

2

T∑
t=1

e−hi,t ŝ2t −
1

2
Eσ2

i

[
1

σ2
i

]

×

(
T∑
t=2

(hi,t − hi,t−1)
2 + (hi,1 − ĥi,0)

2 + K̂−1
hi,0

)
.

Similar to the approach used in Chan and Yu (2022) for their VAR-SV model, we locate

the optimal Gaussian density q∗hi
by finding the mode of log q̃∗hi

and employ it as the mean,

and use the inverse negative Hessian of log q̃∗hi
evaluated at the mode as the variance.

The Variational Lower Bound
Next, we derive the variational lower bound

¯
p(y; q). To that end, we first compute the

log ratio of the joint posterior density and the variational approximation:
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log

[
p(y,α,β,h,h0,σ

2,κ)

q(κ)
∏n

i=1 q(αi)q(βi)q(hi)q(h0,i)q(σ2
i )

]
=cκ +

n∑
i=1

[
ci −

1

2
1l′Thi −

1

2
((Y −XA)B0,i,1:n)

′D−1
i ((Y −XA)B0,i,1:n))

− T

2
log σ2

i −
1

2σ2
i

(hi − hi,01lT )
′H′H(hi − hi,01lT )

− 1

2
log |Vβi

| − 1

2
(βi − β0,i)

′V−1
βi
(βi − β0,i)−

1

2Vhi,0

h2i,0 − (νi + 1) log σ2
i −

Si

σ2
i

− 1

2
log |Vαi

| − 1

2
(αi −α0,i)

′V−1
αi
(αi −α0,i)

]
+

3∑
r=1

[
(cr,1 − 1) log κr − cr,2κr

]
+

n∑
i=1

[
1

2
(hi − ĥi)

′K̂hi
(hi − ĥi) +

1

2
(αi − ¯̂αi)

′K̂αi
(αi − ¯̂αi)

+
1

2
(βi −

¯̂
βi)

′K̂βi
(βi −

¯̂
βi) +

K̂hi,0

2
(hi,0 − ĥi,0)

2 + (ν̂i + 1) log σ2
i +

Ŝi

σ2
i

]

−
3∑

r=1

[
(vr − 1) log κr −

arκr + brκ
−1
r

2

]
,

where ci = −T
2
log(2π) − 1

2
log Vhi,0

− 1
2
log |K̂αi

| + νi logSi − log Γ(νi) −
1
2
log |K̂hi

| − 1
2
log |K̂βi

| − 1
2
log |K̂αi

| − 1
2
log K̂hi,0

− ν̂i log Ŝi + log Γ(ν̂i), and cκ =∑3
r=1 [cr,1 log cr,2 − log Γ(cr,1)] −

∑3
r=1

[
vr
2
(log ar − log br)− log(2Kvr

√
arbr)

]
, Kvr(·) is a

modified Bessel function of the second kind. Taking expectation of the above log ratio
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with respect to q, we obtain the following variational lower bound:

¯
p(y; q) = Eq

{
log

[
p(y,α,β,h,h0,σ

2,κ)

q(κ)
∏n

i=1 q(αi)q(βi)q(hi)q(h0,i)q(σ2
i )

]}
= cκ +

n∑
i=1

[
ci −

1

2
1l′T ĥi −

1

2

(
(Y −XĀ)B̄0,i,1:n

)′
D−1

i

(
(Y −XĀ)B̄0,i,1:n

)
− 1

2
B̄′

0,i,1:nGiB̄0,i,1:n −
1

2
tr
(
(Y −XĀ)′D−1

i (Y −XĀ)K̂−1
B0,i,1:n

)
− 1

2

ν̂i

Ŝi

[
(ĥi − ĥi,01lT )

′H′H(ĥi − ĥi,01lT ) + tr(H′HK̂−1
hi
) + K̂−1

hi,0

]
− 1

2Vhi,0

(ĥ2i,0 + K̂−1
hi,0

)− Siν̂i

Ŝi

+ ν̂i −
1

2
log |Vβi

| − 1

2
log |Vαi

|

− 1

2
(
¯̂
βi − βi,0)

′V−1
βi
(
¯̂
βi − βi,0)−

1

2
tr
(
V−1

βi
K̂−1

βi

)
− 1

2
( ¯̂αi −αi,0)

′V−1
αi
( ¯̂αi −αi,0)−

1

2
tr
(
V−1

αi
K̂−1

αi

)
+

1

2
(T + ki + 1)

]

+
3∑

r=1

[
(cr,1 − vr)log κr −

(
cr,2 −

1

2
ar

)
κ̄r +

1

2
brκ−1

r

]
,

where we use numerical methods to compute the mean log κr.
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A.2 Reduced-Form Large VARs with Stochastic Volatility and

Outlier Component

On the basis of the VAR-SV model, we discuss three modeling strategies that have been

used in literature for outlier adjustment. In the first model, we assign greater importance

to outliers that correspond to extreme but rare events. The second strategy characterizes

frequent occurrences of small outliers as samples from an inverse-gamma distribution,

effectively transforming the Gaussian innovations in the VAR-SV model into t-distributed

shocks. The last strategy takes advantage of the known timing of COVID-19 and treats

it as a deterministic break in the covariance matrix.

Specification 1: An explicit outlier component (VAR-SVO)

In SVO model, we introduce an outlier parameter that has a discrete mixture represen-

tation proposed in Stock and Watson (2016). In specific, the outliers enter the model

in a diagonal matrix of scale factors, denoted Ot, with diagonal elements oi,t that are

mutually i.i.d over all i and t.With B0 and Dt specified as before, the covariance matrix

now takes the form:

Σt = B−1
0 OtDtO

′
t(B

−1
0 )′.

The outlier parameters oi,t is assumed to have a mixture distribution that distinguishes

between regular observations oi,t = 1 and outliers with oi,t ⩾ 2. The probability that

outliers in variable i occur is poi
. We assume that when the outliers occur, they follow a

uniform distribution on (2, 20), i.e., oi,t ∼ U(2, 20). The outlier probability poi
is assumed

to have a beta prior B(apoi , bpoi ), where in practice the hyperparameters apoi and bpoi are

calibrated so that the mean outlier frequency is once every 4 years in quarterly data.

Specification 2: Student-t distributed innovations (VAR-SVt)

The SV-t model expands upon the SV model by incorporating an additional parameter

qi,t, for i = 1, ..., n, t = 1, ..., T . In specific, we let the squares of the new parameter have

inverse-gamma distribution:

q2i,t ∼ IG
(
li
2
,
li
2

)
.

Let Qt denote the new state matrix, in which the diagonal elements qi,t are mutually

i.i.d. over all i and t. With this specification, the covariance matrix of the VAR takes the
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form

Σt = B−1
0 QtDtQ

′
t(B

−1
0 )′.

Define εt = B−1
0 D

1
2
t Qtvt, where vt ∼ N (0, In). It is important to note that the i-th

residual qi,t · vi,t (adjusted by B−1
0 and scaling by D

1
2 ) has a student-t distribution with

li degrees of freedom because vi,t ∼ N (0, 1) and li/q
2
i,t ∼ χ2

li
.

Specification 3. Common volatility with a deterministic break date (VAR-

CVD)

In the VAR-CVD model, the exact timing of the change in volatility during the COVID-

19 pandemic is regarded as deterministic, denoted as t∗. The covariance matrix takes the

form:

Σt = s2tΣ,

where st, for t = 1, ..., T , is latent and to be estimated. When we work with a monthly

VAR, since March 2020 was the first month of abnormal data variation, the standard

deviation of the March shocks is scaled by an unknown parameter s̄0, and the same goes

for April and May, with two other unknown parameters s̄1 and s̄2. Then a persistent

process is assumed for st after May 2020. Specifically, the residual variance after May

decays at a constant monthly rate, ρ, which is also treated as an unknown parameter to

be estimated. To put these assumptions in equations, we have

st∗ = s̄0, st∗+1 = s̄1, st∗+2 = s̄2, st∗+j = 1 + (s̄2 − 1)ρj−2, j = 3, ..., T.

Variational Inference for the Reduced-Form VAR

We define oi = (oi,1, ..., oi,T )
′, and qi = (qi,1, ..., qi,T )

′. For the VAR-SVO model, we

approximate p(α,β,h,h0,σ
2,κ,o|y) using the product of densities

q(α,β,h,h0,σ
2,κ,o, poi

) = q(κ)
n∏

i=1

q(αi,βi,hi, hi,0, σ
2
i ,oi, poi

)

= q(κ)
n∏

i=1

q(αi)q(βi), q(hi)q(hi,0)q(σ
2
i )q(oi)q(poi

).
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For VAR-SV-t, we approximate p(α,β,h,h0,σ
2,κ,q|y) using the product of densities

q(α,β,h,h0,σ
2,κ,q) = q(κ)

n∏
i=1

q(αi,βi,hi, hi,0, σ
2
i ,qi)

= q(κ)
n∏

i=1

q(αi)q(βi), q(hi)q(hi,0)q(σ
2
i )q(qi).

For VAR-CVD, we denote the unknown parameters s̄2 and ρ by a vector γ = (s̄2, ρ)
′.

Then we approximate p(α, s̄0, s̄1,γ,κ,Σ|y) using the product of densities

q(α, s̄0, s̄1,γ,κ,Σ) = q(α)q(s̄0)q(s̄1)q(γ)q(κ)q(Σ).

In what follows, we derive the explicit forms of each of these optimal marginal densities

and their associated parameters. For VAR-SVO and VAR-SVt, we omit the details for

obtaining q∗αi
, q∗βi

, q∗(κ), q∗(hi,0), and q
∗(σ2) in this section because it is similar to that

in VAR-SV without the outlier component.

1. VAR-SVO

The Optimal Density q∗oi

The optimal density q∗oi
takes the form

q∗oi
∝ exp{E−oi

[log p(oi|y,α,β,hi, poi
)]}.

The conditional distribution of oi is as follows

p(oi|y,α,β,hi, poi
) ∝

T∏
t=1

(o2i,t)
− 1

2 exp

{
−1

2
o−2
i,t e

−hi,t ε̃2i,t

}
(1− poi

)I(oi,t=1)
(poi

19

)I(oi,t⩾2)

.
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The log of the optimal density log(q∗oi
) therefore takes the form

log(q∗oi
) = Coi

− 1

2

T∑
t=1

[
log o2i,t −

1

2
o−2
i,t e

−h̄i,t+
1
2
d̂i,t ŝ2t

]
+ T1Epoi

[log(1− poi
)]

+ (T − T1)Epoi
[log(poi

/19)],

where Ti,1 =
∑T

t=1 I(oi,t = 1), i.e., the number of elements in oi that is equal to 1.

We follow Stock and Watson (2016) to discretize the support of oi,t to simplify estimation.

In specific, we use a grid with grid points at 1, 2, ..., 20. The prior of oi,t then becomes a

discrete distribution that has probability 1−poi
at 1 and probability poi

/19 at j = 2, ..., 20.

The likelihood can also be easily evaluated at these grid points. Finally we compute the

expectation and variance based on the likelihood at the corresponding points.

It is important to note that in this process we are able to compute Coi
as well. In specific,

since
∑20

j=1 qoi,t(oi,t = j) = 1, we have

exp(Coi,t) =
1

Moi,t

,

where

Moi,t =
20∑

oi,t=1

(o2i,t)
− 1

2 exp

{
− 1

2
o−2
i,t e

−h̄i,t+
1
2
d̂i,t ŝ2t

+ I(oi,t = 1)Epoi
[log(1− poi

)] + I(oi,t ⩾ 2)Epoi
[log(poi

/19)]

}
.

This will be useful for us to compute the variational lower bound later on.

The Optimal Density q∗poi
The optimal density q∗poi takes the form

q∗poi ∝ exp{E−poi
[log p(poi

|oi)]},
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The conditional distribution of poi
is as follows

p(poi
|oi) ∝ p

apoi+(T−Ti,1)

oi (1− poi
)bpoi+Ti,1 .

The log of the optimal density log(p∗oi
) therefore takes the form

log(p∗oi
) = Cpoi

+ (apoi + (T − Ti,1)) log poi
+ (bpoi + Ti,1) log(1− poi

)

So that

E−poi
[log(p∗oi

)] = Cpoi
+ (apoi + (T − T̄i,1)) log poi

+ (bpoi + T̄i,1) log(1− poi
),

where T̄i,1 ≡ Eoi
[Ti,1] = Eoi

[
∑T

t=1 I(oi,t = 1)] =
∑T

t=1 q
∗
oi,t

(oi,t = 1). Therefore, the

approximating density is a beta distribution: B
(
apoi + (T − T̄i,1)), bpoi + T̄i,1

)
.

The Variational Lower Bound

Next, we derive the variational lower bound
¯
p(y; q). To that end, we first compute the

log ratio of the joint posterior density and the variational approximation:
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log

[
p(y,α,β,h,h0,σ

2,o,κ,po)

q(κ)
∏n

i=1 q(αi)q(βi)q(hi)q(h0,i)q(σ2
i )q(oi)q(poi

)

]
=cκ +

n∑
i=1

[
ci −

1

2
1l′T (hi + log o2

i )−
1

2
((Y −XA)B0,i,1:n)

′M−1
i ((Y −XA)B0,i,1:n))

− T

2
log σ2

i −
1

2σ2
i

(hi − hi,01lT )
′H′H(hi − hi,01lT )

− 1

2
(βi − β0,i)

′V−1
βi
(βi − β0,i)−

1

2Vhi,0

h2i,0 − (νi + 1) log σ2
i −

Si

σ2
i

− 1

2
(αi −α0,i)

′V−1
αi
(αi −α0,i) + Ti,1 log(1− poi

)

+ (T − Ti,1) log
(poi

19

)
+ (apoi − 1) log(poi

) + (bpoi − 1) log(1− poi
)

]

+
3∑

r=1

[
(cr,1 − 1) log κr − cr,2κr

]
−
[ 3∑

r=1

(vr − 1) log κr −
arκr + brκ

−1
r

2

]
+

n∑
i=1

{
1

2
(hi − ĥi)

′K̂hi
(hi − ĥi) +

1

2
(αi − ¯̂αi)

′K̂αi
(αi − ¯̂αi)

+
1

2
(βi −

¯̂
βi)

′Kβi
(βi −

¯̂
βi) +

K̄hi,0

2
(hi,0 − ĥi,0)

2 + (ν̂i + 1) log σ2
i +

Ŝi

σ2
i

−

[
Coi

+
T∑
t=1

{
log(o−1

i,t )−
1

2
o−2
i,t e

−h̄i,t+
1
2
d̂i,t ŝ2t

}
+ Ti,1Epoi

[log(1− poi
)]

+ (T − Ti,1)Epoi
[log(poi

/19)] + (apoi + T − T̄i,1 − 1) log(poi
)

+ (bpoi + T̄i,1 − 1) log(1− poi
)− log Γ(apoi + T − T̄i,1)− log Γ(bpoi + T̄i,1)

]}
,

where M = O2 ·D, ci = −T
2
log(2π) − 1

2
log Vhi,0

− 1
2
log |Vβi

| − 1
2
log |K̂αi

| + νi logSi −
log Γ(νi) − 1

2
log |K̂hi

| − 1
2
log |Vαi

| − 1
2
log |K̂βi

| − 1
2
log |K̂αi

| − 1
2
log K̂hi,0

− ν̂i log Ŝi +

log Γ(ν̂i) + log Γ(apoi + bpoi )− log Γ(apoi )− log Γ(bpoi )− log Γ(apoi + bpoi + T ), and cκ =∑3
r=1 [cr,1 log cr,2 − log Γ(cr,1)] −

∑3
r=1

[
vr
2
(log ar − log br)− log(2Kvr

√
arbr)

]
, Kvr(·) is a

modified Bessel function of the second kind. Taking expectation of the above log ratio
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with respect to q, we obtain the following variational lower bound:

¯
p(y; q) = Eq

{
log

[
p(y,α,β,h,h0,σ

2,o,po)∏n
i=1 q(αi)q(βi)q(hi)q(h0,i)q(σ2

i )q(oi)q(poi
)

]}
=

n∑
i=1

[
ci −

1

2
1l′T ĥi −

1

2

(
(Y −XĀ)B̄0,i,1:n

)′
M−1

i

(
(Y −XĀ)B̄0,i,1:n

)
− 1

2
B̄′

0,i,1:nGiB̄0,i,1:n −
1

2
tr
(
(Y −XĀ)′M−1

i (Y −XĀ)K̂−1
B0,i,1:n

)
− 1

2Vhi,0

(ĥi,0 + K̄−1
hi,0

)− 1

2
(
¯̂
βi − βi,0)

′V−1
βi
(
¯̂
βi − βi,0)−

1

2
tr
(
V−1

βi
K̂−1

βi

)
− 1

2
( ¯̂αi −αi,0)

′V−1
αi
( ¯̂αi −αi,0)−

1

2
tr
(
V−1

αi
K̂−1

αi

)
+

1

2
(T + ki + 1)

− Coi
+

1

2

T∑
t=1

o−2
i,t e

−h̄i,t+
1
2
d̂i,t ŝ2t − (T − T̄i,1)log poi

− T̄i,1log(1− poi
)

+ log Γ(apoi + T − T̄i,1) + log Γ(bpoi + T̄i,1)

]

+
3∑

r=1

[
(cr,1 − vr)log κr −

(
cr,2 −

1

2
ar

)
κ̄r +

1

2
brκ−1

r

]
,

where log poi
= Epoi

[log poi
] = ψ(apoi + T − T̄i,1)− ψ(apoi + bpoi + T ), and log(1− poi

) =

Epoi
[log(1− poi

)] = ψ(bpoi + T̄i,1)− ψ(apoi + bpoi + T ), ψ(·) is the digamma function, and

o−2
i,t = Eoi,t [o

−2
i,t ].
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2. VAR-SVt

We omit the details for obtaining the optimal densities q∗αi
, q∗βi

, q∗h, q
∗
h0
, q∗σ2 in this section

and focus on q∗qi
, because they are similar to those in the model VAR-SVO.

The Optimal Density q∗qi

The optimal density q∗qi
takes the form

q∗qi
∝ exp{E−qi

[log p(qi|y,α,β,hi)]},

The conditional distribution of qi is as follows

p(qi|y,α,β,hi) ∝
T∏
t=1

(q2i,t)
− 1

2 exp

{
−1

2
q−2
i,t e

−hi,t ε̃2i,t

}
(q2i,t)

− li
2
−1 exp

{
−

li
2

q2i,t

}

=
T∏
t=1

(q2i,t)
− li

2
− 1

2
−1 exp

{
− 1

q2i,t

(
li
2
+

1

2
e−hi,t ε̃2i,t

)}
.

The expectation of the log of the optimal density E−qi
[log p(qi| · )] gives

E−qi
[log p(qi| · )] = Cqi

+
T∑
t=1

[(
− li
2
− 1

2
− 1

)
log(q2i,t)

− 1

q2i,t

(
li
2
+

1

2
Ehi,t

[e−hi,t ]ŝ2t

)]
,

where Cqi
is a constant independent of qi. It is clear that the optimal density q∗qi,t

is an

inverse-gamma distribution: IG(ν̂qi , Ŝqi,t), where

ν̂qi =
li
2
+

1

2
, Ŝqi,t =

li
2
+

1

2
Ehi,t

[e−hi,t ]ŝ2t .

The optimal densities for other parameters are quite similar to SV model, so we are

omitting the details here.

The Variational Lower Bound

Next, we derive the variational lower bound
¯
p(y; q). To that end, we first compute the

log ratio of the joint posterior density and the variational approximation:
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log

[
p(y,α,β,h,h0,σ

2,q)∏n
i=1 q(αi)q(βi)q(hi)q(h0,i)q(σ2

i )q(qi)

]
=

n∑
i=1

[
ci −

1

2
1l′T (hi + log q2

i )−
1

2
((Y −XA)B0,i,1:n)

′F−1
i ((Y −XA)B0,i,1:n))

− T

2
log σ2

i −
1

2σ2
i

(hi − hi,01lT )
′H′H(hi − hi,01lT )−

1

2
(βi − β0,i)

′V−1
βi
(βi − β0,i)

− 1

2Vhi,0

h2i,0 − (νi + 1) log σ2
i −

Si

σ2
i

− 1

2
(αi −α0,i)

′V−1
αi
(αi −α0,i)

−
(
li
2
+ 1

)
1l′T log q2

i −
li
2
1l′Tq

−2
i

]
+

3∑
r=1

[
(cr,1 − 1) log κr − cr,2κr

]

+
n∑

i=1

{
1

2
(hi − ĥi)

′K̂hi
(hi − ĥi) +

1

2
(αi − ¯̂αi)

′K̂αi
(αi − ¯̂αi)

+
1

2
(βi −

¯̂
βi)

′Kβi
(βi −

¯̂
βi) +

K̄hi,0

2
(hi,0 − ĥi,0)

2 + (ν̂i + 1) log σ2
i +

Ŝi

σ2
i

−

[
T∑
t=1

(
ν̂qi log Ŝqi,t

)
−
(
li
2
+

1

2
+ 1

)
1l′T log q2

i −
T∑
t=1

(
Ŝqi,t

q2i,t

)

+
3∑

r=1

(vr − 1) log κr −
arκr + brκ

−1
r

2

]}
,

where ci = −T
2
log(2π) − 1

2
log Vhi,0

− 1
2
log |Vβi

| − 1
2
log |K̂αi

| + νi logSi − log Γ(νi) −
1
2
log |K̂hi

| − 1
2
log |Vαi

| − 1
2
log |K̂βi

| − 1
2
log |K̂αi

| − 1
2
log K̂hi,0

− ν̂i log Ŝi + log Γ(ν̂i) +
T li
2
(log li − log 2) − T log Γ

(
li
2

)
+ T log Γ(ν̂qi), Fi = Q2

i · Di, and cκ =∑3
r=1 [cr,1 log cr,2 − log Γ(cr,1)] −

∑3
r=1

[
vr
2
(log ar − log br)− log(2Kvr

√
arbr)

]
, Kvr(·) is a

modified Bessel function of the second kind. Let Qi denote the diagonal matrix of which

the diagonal elements are qi = (qi,1, ...qi,T )
′, i.e., Qi = diag(qi,1, ...qi,T ). Taking expecta-

tion of the above log ratio with respect to q, we obtain the following variational lower
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bound:

¯
p(y; q) = Eq

{
log

[
p(y,α,β,h,h0,σ

2,q)∏n
i=1 q(αi)q(βi)q(hi)q(h0,i)q(σ2

i )q(qi)

]}
=

n∑
i=1

[
ci −

1

2
1l′T ĥi −

1

2

(
(Y −XĀ)B̄0,i,1:n

)′
F−1

i

(
(Y −XĀ)B̄0,i,1:n

)
− 1

2
B̄′

0,i,1:nGiB̄0,i,1:n −
1

2
tr
(
(Y −XĀ)′F−1

i (Y −XĀ)K̂−1
B0,i,1:n

)
− 1

2Vhi,0

(ĥi,0 + K̄−1
hi,0

)− 1

2
(
¯̂
βi − βi,0)

′V−1
βi
(
¯̂
βi − βi,0)−

1

2
tr
(
V−1

βi
K̂−1

βi

)
− 1

2
( ¯̂αi −αi,0)

′V−1
αi
( ¯̂αi −αi,0)−

1

2
tr
(
V−1

αi
K̂−1

αi

)
+

1

2
(T + ki + 1)

+
1

2

T∑
t=1

e−h̄i,t+
1
2
d̂i,tq−2

i,t ŝ
2
t −

T∑
t=1

ν̂qi log Ŝqi,t

]

+ cκ +
3∑

r=1

[
(cr,1 − vr)log κr −

(
cr,2 −

1

2
ar

)
κ̄r +

1

2
brκ−1

r

]
,

where q−2
i,t = Eq2i,t

[q−2
i,t ] =

ν̂qi
Ŝqi,t

.
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3. VAR-CVD

The optimal density q∗α
The optimal density q∗α has the form

q∗α ∝ exp {E−α [log p(α|y, s,κ,Σ)]} ,

where the expectation is taken with respect to the marginal density q−α(s,κ,Σ).

From Chan (2020b), we have

(α|y, s,κ,Σ) ∼ N (α̂,K−1
α ),

where

Kα = V−1
α +X′(S−2 ⊗Σ−1)X, α̂ = K−1

α

(
V−1

α α0 +X′(S−2 ⊗Σ−1)y)
)
.

The log-density is therefore

log p(α| · ) = cα − 1

2
α′Kαα+α′ (V−1

α α0 +X′(S−2 ⊗Σ−1)y)
)
,

where cα is a term not dependent on α. After taking the expectation, we essentially get

an approximating density N ( ¯̂α, K̂−1
α ), where

K̂α = E−αi

[
V−1

α +X′(S−2 ⊗Σ−1)X
]

= V
−1

αi
+X′(S

−2 ⊗Σ
−1
)X,

¯̂α = E−αi

[
K̂−1

α

(
V−1

α α0 +X′(S−2 ⊗Σ−1)y
)]

= K̂−1
α

[
V

−1

αi
α0 +X′(S

−2 ⊗Σ
−1
)y
]
.

The Optimal Density q∗Σ
The optimal density q∗Σ has the form

q∗Σ ∝ exp {E−Σ [log p(Σ|y, s,κ,α)]} ,

where the expectation is taken with respect to the marginal density q−Σ(s,κ,α). From
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Chan (2020b), we know

(Σ| · ) ∼ IW

(
ν + T,Ψ+

T∑
t=1

(yt −Xtα)s−2
t (yt −Xtα)′

)
.

After taking the expectation, we obtain the approximating density IW(ν̂, Ψ̂), where

ν̂ = ν + T, Ψ̂ = Ψ+
T∑
t=1

s̄−2
t

(
xtK̂

−1
α x′

t +
(
yt − xt

¯̂α
) (

yt − xt
¯̂α
)′)

.

The expectation of Σ is therefore Ψ̂/(ν̂ − n − 1). It is also useful to know that Σ

follows an inverse Wishart distribution IWn(ν̂, Ψ̂) if Σ−1 follows a Wishart distribution

Wn(ν̂ + n− 1,Ψ−1). Therefore, the expectation of Σ−1 is (ν̂ + n− 1)Ψ−1.

Optimal Density q∗s̄0 and q∗s̄1
The optimal density q∗s̄0 has the form

q∗s̄0 ∝ exp {E−s̄0 [log p(s̄0|yt∗ ,α,κ,Σ, ρ)]} ,

where the expectation is taken with respect to the marginal density q−s̄0(α,κ,Σ, ρ), t
∗

denotes the time period of the pandemic (March 2020).

The log-density is

log p(s̄0) = Cs̄0 −
n

2
log s̄20 −

(yt∗ −Xt∗α)′ Σ−1 (yt∗ −Xt∗α)

2s̄20
− log s̄20.

After taking the expectation, we obtain the approximating density for s̄20: IG(νs̄0 , ϕs̄0),

where

νs̄0 =
n+ 1

2
, ϕs̄0 =

1

2

[(
yt∗ −Xt∗

¯̂α
)′
Σ

−1 (
yt∗ −Xt∗

¯̂α
)
+ tr

(
Σ

−1
Xt∗K̂

−1
α X′

t∗

)]
.

Similarly, we have the approximating density for s̄21: IG(νs̄1 , ϕs̄1), where

νs̄1 =
n+ 1

2
, ϕs̄1 =

1

2

[(
yt∗+1 −Xt∗+1

¯̂α
)′
Σ

−1 (
yt∗+1 −Xt∗+1

¯̂α
)
+ tr

(
Σ

−1
Xt∗+1K̂

−1
α X′

t∗+1

)]
.
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Optimal Density q∗γ
The optimal density q∗γ has the form

q∗γ ∝ exp {E−γ [log p(γ|yt∗+2:T ,α,κ,Σ)]} ,

where the expectation is taken with respect to the marginal density q−γ(α,κ,Σ), t∗+2 : T

denotes the time periods from the period t∗ + 2 and onwards.

The log-density is

log p(γ| · ) =Cγ −
(n
2
+ 1
)
log s̄22 − n

T∑
t=t∗+3

log st −
1

2

T∑
t=t∗+3

(yt −Xtα)′Σ−1(yt −Xtα)

s2t

− (yt∗+2 −Xt∗+2α)′Σ−1(yt∗+2 −Xt∗+2α)

2s̄22
+ (a− 1) log ρ+ (b− 1) log(1− ρ),

where st = 1 + (s̄2 − 1)ρt−t∗−2.

After taking the expectation, we have

E−γ(log p(γ| · )) =Cγ −
(n
2
+ 1
)
log s̄22 − n

T∑
t=t∗+3

log st

− 1

2

T∑
t=t∗+3

[
(yt −Xt

¯̂α)′Σ̄−1(yt −Xt
¯̂α) + tr(Σ̄−1XtK̂

−1
α X′

t)
]

s2t

− 1

2s̄22

[
(yt∗+2 −Xt∗+2

¯̂α)′Σ̄−1(yt∗+2 −Xt∗+2
¯̂α) + tr(Σ̄−1Xt∗+2K̂

−1
α X′

t∗+2)
]

+ (a− 1) log ρ+ (b− 1) log(1− ρ).

Clearly this is not a standard density function. In this paper, we use grid approximation

for this density. In specific, we define a two-dimensional grid for γ, and evaluate the

log-density on each point of the grid. Finally, we obtain the approximation of q∗(γ),

E(γ) and E(st), for t = t∗ + 2, ..., T .

We omit the details for obtaining the optimal density q∗κ since they are the same as in

VAR-SV.
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Variational Lower Bound
Next, we derive the variational lower bound

¯
p(y; q). To that end, we first compute the

log ratio of the joint posterior density and the variational approximation:

log

[
p(y,α,Σ,κ, s20, s

2
1,γ)

q(κ)q(α)q(Σ)q(κ)q(s20)q(s
2
1)q(γ)

]
=− 1

2
log det

(
2πS2 ⊗Σ

)
− 1

2
(y −Xα)′(S2 ⊗Σ)−1(y −Xα)

− 1

2
log det(2πVα)−

1

2
(α−α0)

′V−1
α (α−α0)

+
ν

2
log det(Ψ)− nν

2
log(2)− log Γn

(ν
2

)
− ν + n+ 1

2
log det(Σ)− 1

2
tr(ΨΣ−1)

+ 2 log

(
1

2

)
− 3

2
log s̄20 −

3

2
log s̄21 − log s̄22

+ (a− 1) log ρ+ (b− 1) log(1− ρ)− logB(a, b)

−

[
− 1

2
log det(2πK̂−1

α )− 1

2
(α− ¯̂α)′K̂α(α− ¯̂α)

+
ν + T

2
log det(Ψ̂)− (ν + T )n

2
log 2− log Γn

(
ν + T

2

)
− ν + T + n+ 1

2
log det(Σ)− 1

2
tr(Ψ̂Σ−1)

+ νs0 log ϕs0 − log Γ(νs0)− (νs0 + 1) log s20 −
ϕs0

s20

+ νs1 log ϕs1 − log Γ(νs1)− (νs1 + 1) log s21 −
ϕs1

s21

+ Cγ −
(n
2
+ 1
)
log s̄22 − n

T∑
t=t∗+3

log(1 + (s̄2 − 1)ρt−t∗−2)

− 1

2

T∑
t=t∗+3

[
(yt −Xt

¯̂α)′Σ̄−1(yt −Xt
¯̂α) + tr(Σ̄−1XtK̂

−1
α X′

t)
]

(1 + (s̄2 − 1)ρt−t∗−2)2

− 1

2s̄22

[
(yt∗+2 −Xt∗+2

¯̂α)′Σ̄−1(yt∗+2 −Xt∗+2
¯̂α) + tr(Σ̄−1Xt∗+2K̂

−1
α X′

t∗+2)
]

+ (a− 1) log ρ+ (b− 1) log(1− ρ)

]

+ cκ +
2∑

r=1

[
(cr,1 − 1) log κr − cr,2κr

]
−

2∑
r=1

[
(vr − 1) log κr −

arκr + brκ
−1
r

2

]
,
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where cκ =
∑2

r=1 [cr,1 log cr,2 − log Γ(cr,1)]−
∑2

r=1

[
vr
2
(log ar − log br)− log(2Kvr

√
arbr)

]
,

Kvr(·) is a modified Bessel function of the second kind. Taking expectation of the above

log ratio with respect to q, we obtain the following variational lower bound:

¯
p(y; q) = Eq

{
log

[
p(y,α,Σ,κ, s20, s

2
1, s2, ρ)

q(κ)q(α)q(Σ)q(κ)q(s20)q(s
2
1)q(s2)q(ρ)

]}
= − 1

2
E[log |Vα|]−

1

2
( ¯̂α−α0)

′Vα−1( ¯̂α−α0)−
1

2
tr(V−1

α K̂−1
α )

+
1

2
log |K̂−1

α |+ 1

2
(n2p+ n)

− ν + T

2
log |Ψ̂|+ 1

2

T∑
t=t∗

(
E[s−2

t ]
[
tr(Σ̄−1XK̂−1

α X′
t) + (y −Xt

¯̂α)′Σ̄−1(y −Xt
¯̂α)
])

− νs0 log ϕs0 + log Γ(νs0)− νs1 log ϕs1 + log Γ(νs1)

− Cγ + cκ +
2∑

r=1

[
(cr,1 − vr)log κr −

(
cr,2 −

1

2
ar

)
κ̄r +

1

2
brκ−1

r

]
+ C,

where C = −nT
2
log 2π + ν

2
log |Ψ| − nν

2
log 2 − log Γn

(
ν
2

)
− 2 log(2) + (ν+T )n

2
log 2 +

log Γn

(
ν+T
2

)
.
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A.3 Reduced-Form Large VARs with AR(1) Stochastic Volatil-

ity

In our baseline VAR-SV model the log volatility is specified as a random walk process.

Here we consider the following stationary AR(1) process:

hi,t = µi + ρi(hi,t−1 − µi) + uhi,t, uhi,t ∼ N (0, σ2
i ),

for t = 2, . . . , T , and the initial condition hi,1 is specified as hi,1 ∼ N (µi, σ
2
i /(1− ρ2i ).

Now, we approximate p(α,β,h,µ,ρ,σ2,κ|y) using the product of densities

q(α,β,h,µ,ρ,σ2,κ) = q(κ)
n∏

i=1

q(αi,βi,hi, µi, ρi, σ
2
i )

= q(κ)
n∏

i=1

q(αi)q(βi), q(hi)q(µi)q(ρi)q(σ
2
i )

Since changing from a random walk process to an AR(1) process in stochastic volatility

affects q(h), q(σ2
i ) and adds q(ρ) and q(µ), we only discuss the derivation of the explicit

forms of the mentioned optimal marginal densities as well as the corresponding variational

lower bound in this section.

The Optimal Density q∗
σ2
i

The kernel of the optimal density q∗
σ2
i
is given by

q∗σ2
i
∝ exp

{
E−σ2

i
[log p(σ2

i |hi, µi, ρi)]
}
,

where the expectation is taken with respect to the marginal density q−σ2
i
(hi, µi, ρi) =

qhi
(hi)qµi

(µi)qρi(ρi). To derive an explicit expression for q∗
σ2
i
, first note that

log p(σ2
i |hi, µi, ρi) =cσ2

i
− T

2
log σ2

i −
1

2σ2
i

[
(1− ρ2i )(hi,1 − µi)

2 +
T∑
t=2

(hi,t − µi − ρi(hi,t−1 − µi))
2

]
−

νi log σ
2
i −

Si

σ2
i

,

where cσ2
i
is a constant not dependent on σ2

i . Taking expectation with respect to the
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marginal density q−σ2
i
gives

E−σ2
i
[log p(σ2

i |hi, µi, ρi)] = cσ2
i
−
(
νi +

T

2

)
log σ2

i −
Si

σ2
i

− 1

2σ2
i

[
E(1− ρ2i )(hi,1 − µi)

2 +
T∑
t=2

E(hi,t − µi − ρi(hi,t−1 − µi))
2

]
,

and the right-hand side of the equation is the kernal of an inverse-gamma distribution

IG(ν̂i, Ŝi) where

ν̂i = νi +
T

2
, Ŝi = Si +

1

2

[
E(1− ρ2i )(hi,1 − µi)

2 +
T∑
t=2

E(hi,t − µi − ρi(hi,t−1 − µi))
2

]
,

and we have

E(1− ρ2i )(hi,1 − µi)
2 =

[
(ĥi,1 − µ̂i)

2 + K̂−1
hi,1

+ K̂−1
µi

] [
1−

(
K̂−1

ρi
+ ρ̂i

2
)]

E(hi,t − µi − ρi(hi,t−1 − µi))
2 =

(
ĥi,t − µ̂i − ρ̂i(ĥi,t−1 − µ̂i)

)2
+Var

[
ĥi,t − µ̂i − ρ̂i(ĥi,t−1 − µ̂i)

]
=
(
ĥi,t − µ̂i − ρ̂i(ĥi,t−1 − µ̂i)

)2
+ K̂−1

hi,t
+ (ρ̂i

2 + K̂−1
ρi

)K̂−1
hi,t−1

+[
(1− ρ̂i)

2 + K̂−1
ρi

]
K̂−1

µi
− 2ρ̂iK̂

−1
hi,t,t−1

+ (ĥ2i,t−1 − µ̂i)
2K̂−1

ρi

The Optimal Density q∗µi

The kernel of the optimal density q∗µi
is given by

q∗µi
∝ exp

{
E−µi

[log p(µi|hi, σ
2
i , ρi)]

}
,

where the expectation is taken with respect to the marginal density q−µi
(hi, σ

2
i , ρi) =

qhi
(hi)qσ2

i
(σ2

i )qρi(ρi). To derive an explicit expression for q∗µi
, first note that

log p(µi|hi, σ
2
i , ρi) =cµi

− 1

2

(
V −1
µi

+
1

σ2
i

[
1− ρ2i + (T − 1)(1− ρi)

2
])

µ2
i+

µi

[
V −1
µi
µ0,i +

1

σ2
i

(
(1− ρ2i )hi,1 + (1− ρi)

T∑
t=2

(hi,t − ρihi,t−1)

)]
,

where cµi
is a constant not dependent on µi. Taking expectation with respect to the
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marginal density q−µi
gives

E−µi
[log p(µi|hi, σ

2
i , ρi)] =cµi

− 1

2

(
V −1
µi

+ E
(

1

σ2
i

)[
1− ρ̂2i + (T − 2)K̂−1

ρi
+ (T − 1)(1− ρ̂i)

2
])

µ2
i+

µi

(
V −1
µi
µ0,i + E

(
1

σ2
i

)[(
1− ρ̂2i − K̂−1

ρi

)
ĥi,1+

T∑
t=2

(1− ρ̂i)ĥi,t +
(
K̂−1

ρi
+ ρ̂2i − ρ̂i

)
ĥi,t−1

])
,

which is the kernel of the normal distribution N (µ̂i, K̂
−1
µi

), where

K̂µi
= V −1

µi
+ E

(
1

σ2
i

)[
1− ρ̂2i + (T − 2)K̂−1

ρi
+ (T − 1)(1− ρ̂i)

2
]
,

µ̂i = K̂−1
µi

[
V −1
µi
µ0,i + E

(
1

σ2
i

)((
1− ρ̂2i − K̂−1

ρi

)
ĥi,1 +

T∑
t=2

(1− ρ̂i)hi,t +
(
K̂−1

ρi
+ ρ̂2i − ρ̂i

)
ĥi,t−1

)]
.

The Optimal Density q∗ρi
The kernel of the optimal density q∗ρi is given by

q∗ρi ∝ exp
{
E−ρi [log p(ρi|hi, σ

2
i , µi)]

}
,

where the expectation is taken with respect to the marginal density q−ρi(hi, σ
2
i , µi) =

qhi
(hi)qσ2

i
(σ2

i )qρi(µi). To derive an explicit expression for q∗ρi , first note that

log p(ρi|hi, σ
2
i , µi) =cρi −

1

2

(ρi − ρ0,i)
2

Vρi
+

1

2
log(1− ρ2i )−

1

2σ2
i

[
(1− ρ2i )(hi,1 − µi)

2 +
T∑
t=2

(hi,t − µi − ρi(hi,t−1 − µi))
2

]
, |ρi| < 1

where cρi is a constant not dependent on ρi. Taking expectation with respect to the

72



marginal density q−ρi gives

E−ρi [log p(ρi|hi, σ
2
i , µi)] =cρi −

1

2

(ρi − ρ0,i)
2

Vρi
+

1

2
log(1− ρ2i )

− 1

2
E
(

1

σ2
i

)[
(1− ρ2i )

[
(ĥi,1 − µ̂i)

2 + K̂−1
hi,1

+ K̂−1
µi

]
+

T∑
t=2

([
ĥi,t − µ̂i − ρi(ĥi,t−1 − µ̂i)

]2
+ K̂−1

hi,t
+ ρ2i K̂

−1
hi,t−1

+

(1− ρi)
2K̂−1

µi
− 2ρiK̂

−1
hi,t,t−1

)]
,

where K̂−1
hi,t,t−1

= Cov(hi,t, hi,t−1). The above expression does not have a kernel of a

standard distribution. For this reason, we use grid approximation to get an approximate

q(ρi), Eρi(ρi) and Varρi(ρi).

The Optimal Density q∗h
The log of the conditional distribution of hi is as follows

log p(hi|yi,α,β, σi, µi, ρi) =chi
− 1

2

T∑
t=1

hi,t −
1

2

T∑
t=1

e−hi,t ε̃2i,t−

1

2σ2
i

(
T∑
t=2

(hi,t − µi − ρi(hi,t−1 − µi))
2 + (1− ρ2i )(hi,1 − µi)

2

)

where chi
is a constant not dependent on hi. Taking the expectation with respect to the

marginal density qhi
(α,β, µi, σ

2
i , ρi) gives

E−hi
[log p(hi|yi,α,β, ρi, σ

2
i , µi)] =chi

− 1

2

T∑
t=1

hi,t −
1

2

T∑
t=1

e−hi,t ŝ2t

− 1

2
E
[
1

σ2
i

]( T∑
t=2

[
(hi,t − µ̂i − ρ̂i(hi,t−1 − µ̂i))

2+

h2i,t−1K̂
−1
ρi

+
[
(1− ρ̂i)

2 + K̂−1
ρi

]
K̂−1

µi
+ µ̂2

i K̂
−1
ρi

]
+(

1− (K̂−1
ρi

+ ρ̂2i )
)(

(hi,1 − µ̂i)
2 + K̂−1

µi

))
,
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where ŝ2t = Ehi
[ε̃2i,t] = Eα,β[(e

′
t(Y − XZ)B0,i,1:n)

2], et is a vector with its t-th element

being 1.

Let log q̃∗hi
= E−hi

[log p(hi| · )]. Obviously, q̃∗hi
is not a standard distribution. We follow

Chan and Yu (2022) and use a normal distribution f(hi;mi, K̂hi
) that is closest to q̃∗hi

in

terms of Kullback-Leibler divergence. To that end, we first compute the expectation of

log f
q
with respect to the density f :

log

(
fm(hi)

q̃∗hi
(hi)

)
=c− 1

2
(hi −mi)

′K̂hi
(hi −mi)+

1

2

[
1l′Thi + (ŝ)′e−hi + (hi − µ̂i1lT )

′HρΩ
−1
i Hρ(hi − µ̂i1lT )+

E
(

1

σ2
i

)
K̂−1

ρi
(h′

ihi − h2i,T )

]
,

where c is a constant independent of hi andmi, ŝ
2 = (ŝ21, . . . , ŝ

2
T )

′. Taking the expectation,

we have

E log

(
fm(hi)

q̃∗hi
(hi)

)
=c+

1

2

[
1l′Tmi + (ŝ)′e−mi+

1
2
d̂i + (mi − µ̂i1lT )

′HρΩ
−1
i Hρ(mi − µ̂i1lT )+

E
(

1

σ2
i

)
K̂−1

ρi
(m′

imi −m2
i,T )

]
.

Now, we are able to derive the gradient and Hessian of E log
(

f
q̃∗

)
:

grad:
1

2

(
1lT − ŝ2 ⊙ e−mi+

1
2
di

)
+H′Ω−1

i H(mi − µ̂i1lT ) + E
(

1

σ2
i

)
K̂−1

ρi
(mi − oT ),

Hess:
1

2
diag

(
ŝ2 ⊙ e−mi+

1
2
di

)
+H′Ω−1

i H+ E
(

1

σ2
i

)
K̂−1

ρi
I1:T,1:T ,

where oT = (0, . . . , 0,mi,T ) and I1:T,1:T = diag(1, . . . , 1, 0).

The Variational Lower Bound
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Next, we derive the variational lower bound

¯
p(y; q) = Eq

{
log

[
p(y,α,β,κ,h,µ,σ2,ρ)

q(κ)
∏n

i=1 q(αi)q(βi)q(hi)q(µi)q(σ2
i )q(ρi)

]}
=

n∑
i=1

[
ci −

1

2
1l′T ĥi −

1

2

(
(Y −XĀ)B̄0,i,1:n

)′
F−1

i

(
(Y −XĀ)B̄0,i,1:n

)
− 1

2
B̄′

0,i,1:nGiB̄0,i,1:n −
1

2
tr
(
(Y −XĀ)′F−1

i (Y −XĀ)K̂−1
B0,i,1:n

)
− Siν̂i

Ŝi

+ ν̂i −
1

2
log |Vβi

| − 1

2
log |Vαi

|

− 1

2
log(Vµi

)− 1

2Vµi

(
(µ̂i − µ0,i)

2 + K̂−1
µi

)
+

1

2

− 1

2
(
¯̂
βi − βi,0)

′V−1
βi
(
¯̂
βi − βi,0)−

1

2
tr
(
V−1

βi
K̂−1

βi

)
− 1

2
( ¯̂αi −αi,0)

′V−1
αi
( ¯̂αi −αi,0)−

1

2
tr
(
V−1

αi
K̂−1

αi

)
+

1

2
(T + ki)− cρi

]

+ cκ +
3∑

r=1

[
(cr,1 − vr)log κr −

(
cr,2 −

1

2
ar

)
κ̄r +

1

2
brκ−1

r

]
,

(A.15)

where ci = −T
2
log(2π) − 1

2
log |K̂αi

| + νi logSi − log Γ(νi) − 1
2
log |K̂hi

| − 1
2
log |K̂βi

| −
ν̂i log Ŝi + log Γ(ν̂i) − 1

2
log K̂µi

− 1
2
log |Vρ|, and cκ =

∑3
r=1 [cr,1 log cr,2 − log Γ(cr,1)] −∑3

r=1

[
vr
2
(log ar − log br)− log(2Kvr

√
arbr)

]
, Kvr(·) is a modified Bessel function of the

second kind.
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B Online Appendix: Variational Importance Sam-

pling

In this appendix, we provide details on how the proposed variational importance sam-

pling approach can be applied to estimate the log marginal likelihoods of the VARs with

stochastic volatility and outlier adjustments.

B.1 Reduced Form Large VARs with Stochastic Volatility

As discussed in Appendix A, the VAR-SV model of Cogley and Sargent (2005) has 6

parameter blocks, and the variational density is of the form

q∗(α,β,h,h0,σ
2,κ) = q∗(κ)

n∏
i=1

q∗(αi)q
∗(βi)q

∗(hi)q
∗(hi,0)q

∗(σ2
i ).

As derived in Appendix A, the component densities q∗(αi), q
∗(βi), q

∗(hi) and q
∗(hi,0) are

Gaussian, and q∗(σ2
i ) is inverse-gamma, and it is straightforward to obtain draws from

these distributions (e.g., Chan et al., 2019, page 127). The component density q∗(κ) is the

product of 3 generalized inverse Gaussian distributions, and draws from the generalized

inverse Gaussian distribution can be obtained using the algorithm in Devroye (2014).

Now, to apply the variational importance sampling approach outlined in Algo-

rithm 2, at iteration i we obtain a draw θ̃
(i)

=
(
α̃(i), β̃

(i)
, h̃(i), h̃

(i)
0 , σ̃

2(i), κ̃(i)
)′

from

q∗(α,β,h,h0,σ
2,κ) by sampling from the component densities, and compute log p̂

(i)
IS =

log p
(
y | θ̃

(i)
)
+ log p

(
θ̃
(i)
)
− log q∗

(
θ̃
(i)
)
for i = 1, . . . ,M . Finally, we return the log

marginal likelihood estimate log p̂IS = log
(
1/M

∑M
i=1 exp

(
log p̂

(i)
IS

))
.

B.2 Reduced Form Large VARs with Stochastic Volatility and

Outlier Component

1. VAR-SVO

The model of Carriero et al. (2022b) has 8 parameter blocks, and the variational density
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is of the following form

q∗(α,β,h,h0,σ
2,κ,o,po) = q∗(κ)

n∏
i=1

q∗(αi)q
∗(βi)q

∗(hi)q
∗(hi,0)q

∗(σ2
i )q

∗(oi)q
∗(poi

).

The component densities q∗(αi), q
∗(βi), q

∗(hi), q
∗(hi,0), q

∗(σ2
i ) and q

∗(κ) are similar to

those for the VAR-SV described above. q∗(poi
) is a Beta distribution, and it is simple to

obtain draws from it. The T elements in oi = (oi,1, . . . , oi,T )
′ can be sampled indepen-

dently from a discrete 20-point distribution, e.g., using the inverse-transform method.

To apply the variational importance sampling approach in Algorithm 2, at it-

eration i, we obtain a draw θ̃
(i)

=
(
α̃(i), β̃

(i)
, h̃(i), h̃

(i)
0 , σ̃

2(i), κ̃(i), õ(i), p̃
(i)
o

)′
from

q∗(α,β,h,h0,σ
2,κ,o,po) and compute log p̂

(i)
IS = log p

(
y | θ̃

(i)
)

+ log p
(
θ̃
(i)
)

−

log q∗
(
θ̃
(i)
)

for i = 1, . . . ,M . Finally, we return the log marginal likelihood estimate

log p̂IS = log
(
1/M

∑M
i=1 exp

(
log p̂

(i)
IS

))
.

2. VAR-SVt

The VAR-SVt model has 7 parameter blocks, and the variational density is of the following

form

q∗(α,β,h,h0,σ
2,κ,q) = q∗(κ)

n∏
i=1

q∗(αi)q
∗(βi)q

∗(hi)q
∗(hi,0)q

∗(σ2
i )q

∗(qi).

The component densities q∗(αi), q
∗(θi), q

∗(hi), q
∗(hi,0), q

∗(σ2
i ) and q

∗(κ) are similar to

those for the VAR-SV described above. q∗(qi) is inverse-gamma and generating samples

from it is straightforward.

To apply the variational importance sampling approach in Algorithm 2, at iteration i, we

obtain a draw θ̃
(i)

=
(
α̃(i), β̃

(i)
, h̃(i), h̃

(i)
0 , σ̃

2(i), κ̃(i), q̃(i)
)′

from q∗(α,β,h,h0,σ
2,κ,q) and

compute log p̂
(i)
IS = log p

(
y | θ̃

(i)
)
+ log p

(
θ̃
(i)
)
− log q∗

(
θ̃
(i)
)
for i = 1, . . . ,M . Finally,

we return the log marginal likelihood estimate log p̂IS = log
(
1/M

∑M
i=1 exp

(
log p̂

(i)
IS

))
.

3. VAR-CVD

The model of Lenza and Primiceri (2022) has 6 parameter blocks, and the variational
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density is as follows

q∗(α, s̄0, s̄1,γ,κ,Σ) = q(α)q(s̄0)q(s̄1)q(γ)q(κ)q(Σ).

The component density q∗(α) is Gaussian, q∗(Σ) is inverse-Wishart, q∗(s̄0) and q∗(s̄1)

are inverse-gamma. The component density q∗(κ) is similar to that in the VAR-SV.

These distributions are simple to sample from. Then we sample γ = (ρ, s2)
′ from

the two-dimensional discrete distribution. In our applications, since the grid for ρ is

(0.5, 0.51, 0.52, . . . , 0.9)′ and the grid for s2 is (50, 50.5, 60, . . . , 100)
′, we can draw γ from

the 41× 101 discrete distribution.

To apply the variational importance sampling approach in Algorithm 2, at iteration i, we

obtain a draw θ̃
(i)

=
(
α̃(i), ˜̄s(i)0 , ˜̄s(i)1 , γ̃

(i), κ̃(i), Σ̃
(i)
)′

from q∗(α, s̄0, s̄1,γ,κ,Σ) and compute

log p̂
(i)
IS = log p

(
y | θ̃

(i)
)
+ log p

(
θ̃
(i)
)
− log q∗

(
θ̃
(i)
)
for i = 1, . . . ,M . Finally, we return

the log marginal likelihood estimate log p̂IS = log
(
1/M

∑M
i=1 exp

(
log p̂

(i)
IS

))
.
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C Online Appendix: Data

Two datasets are used in our application. The first dataset is presented in Carriero

et al. (2022b). This dataset consists of 16 monthly variables, including real income, real

consumption, industrial production, inflation indexes, etc. The specifics of these variables

are outlined in Table 1 of Carriero et al. (2022b). For better reference, we reprint their

variables and transformation in Table C.7.

Table C.7: List of Variables used in Carriero et al. (2022b)

Variable FRED-MD code Transformation

Real Income RPI ∆ log(xt)× 1200

Real Consumption DPCERA3M086SBEA ∆ log(xt)× 1200

IP INDPRO ∆ log(xt)× 1200

Capacity Utilization CUMFNS

Unemployment Rate UNRATE

Nonfarm Payrolls PAYEMS ∆ log(xt)× 1200

Hours CES0600000007

Hourly Earnings CES0600000008 ∆ log(xt)× 1200

PPI (Fin. Goods) WPSFD49207 ∆ log(xt)× 1200

PCE Prices PCEPI ∆ log(xt)× 1200

Housing Starts HOUST log(xt)

S&P 500 SP500 ∆ log(xt)× 1200

USD / GBP FX Rate EXUSUKx ∆ log(xt)× 1200

5-Year Yield GS5

10-Year Yield GS10

Baa Spread BAAFFM

Note: This table is reprinted based on Table 1 in Carriero et al. (2022b). This data set is pub-
lished in their Github website: https://github.com/elmarmertens/CCMMoutlierVAR-code/

blob/master/README.md. This data set is obtained from the “2021-04” vintage of FRED-MD
database, spanning from 03/01/1959 to 03/01/2021.

The second data set used in our application are from the FRED-QD database. We first

transformed the raw data using the “tcode” provided by McCracken and Ng (2020).

Then we conducted ADF test for each series, and found that four series, including capac-

ity utilization: manufacturing, average weekly hours of production and nonsupervisory

employees: manufacturing, help-wanted index, and Moody’s Seasoned Baa Corporate
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Bond Yield Relative to Yield on 10-Year Treasury Constant Maturity, cannot reject the

null hypothesis of the ADF test. We plot these four series in Figure C.6. Since we as-

sume that the prior means of the Minnesota prior are zeros for all series, we transform

these series into stationary series before estimation by taking first differences of their

logarithms.

Figure C.6: Four non-stationary series in FRED-QD data set - capacity utilization: man-
ufacturing, average weekly hours of production and nonsupervisory employees: manufac-
turing, help-wanted index, and Moody’s Seasoned Baa Corporate Bond Yield Relative
to Yield on 10-Year Treasury Constant Maturity (from left to right, up to bottom). The
p-values for the Augmented Dickey-Fuller test for the four series are 0.54, 0.64, 0.96, and
0.26, respectively.

For better presentation, we summarize the list of the variables and their transformations

in Tables C.8 - C.11.
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Table C.8: List of Variables

Variable FRED-QD code Transformation

Real GDP GDPC1 ∆ log(xt)

Real Personal Consumption Expenditures PCECC96 ∆ log(xt)

Real personal consumption expenditures: Durable goods PCDGx ∆ log(xt)

Real Personal Consumption Expenditures: Services PCESVx ∆ log(xt)

Real Personal Consumption Expenditures: Nondurable Goods PCNDx ∆ log(xt)

Real Gross Private Domestic Investment GPDIC1 ∆ log(xt)

Real private fixed investment FPIx ∆ log(xt)

Real Gross Private Domestic Investment: Fixed Investment: Nonresidential: Equipment Y033RC1Q027SBEAx ∆ log(xt)

Real private fixed investment: Nonresidential PNFIx ∆ log(xt)

Real private fixed investment: Residential PRFIx ∆ log(xt)

Shares of gross domestic product: Gross private domestic investment: Change in private inventories A014RE1Q156NBEA

Real Government Consumption Expenditures & Gross Investment GCEC1 ∆ log(xt)

Real Government Consumption Expenditures and Gross Investment: Federal A823RL1Q225SBEA

Real government state and local consumption expenditures SLCEx ∆ log(xt)

Real Exports of Goods & Services EXPGSC1 ∆ log(xt)

Real Imports of Goods & Services IMPGSC1 ∆ log(xt)

Real Disposable Personal Income DPIC96 ∆ log(xt)

Nonfarm Business Sector: Real Output OUTNFB ∆ log(xt)

Business Sector: Real Output OUTBS ∆ log(xt)

Industrial Production Index INDPRO ∆ log(xt)

Industrial Production: Final Products IPFINAL ∆ log(xt)

Industrial Production: Consumer Goods IPCONGD ∆ log(xt)

Industrial Production: Materials IPMAT ∆ log(xt)

Industrial Production: Durable Materials IPDMAT ∆ log(xt)

Industrial Production: Nondurable Materials IPNMAT ∆ log(xt)

Industrial Production: Durable Consumer Goods IPDCONGD ∆ log(xt)

Industrial Production: Durable Goods: Automotive products IPB51110SQ ∆ log(xt)

Industrial Production: Nondurable Consumer Goods IPNCONGD ∆ log(xt)

Industrial Production: Business Equipment IPBUSEQ ∆ log(xt)

Industrial Production: Consumer energy products IPB51220SQ ∆ log(xt)

Capacity Utilization: Manufacturing CUMFNS

All Employees: Total nonfarm PAYEMS ∆ log(xt)

All Employees: Total Private Industries USPRIV ∆ log(xt)

All Employees: Manufacturing MANEMP ∆ log(xt)

All Employees: Service-Providing Industries SRVPRD ∆ log(xt)

All Employees: Goods-Producing Industries USGOOD ∆ log(xt)

All Employees: Durable goods DMANEMP ∆ log(xt)

All Employees: Nondurable goods NDMANEMP ∆ log(xt)

All Employees: Construction USCONS ∆ log(xt)

All Employees: Education & Health Services USEHS ∆ log(xt)

All Employees: Financial Activities USFIRE ∆ log(xt)

All Employees: Information Services USINFO ∆ log(xt)

All Employees: Professional & Business Services USPBS ∆ log(xt)

All Employees: Leisure & Hospitality USLAH ∆ log(xt)

All Employees: Other Services USSERV ∆ log(xt)

All Employees: Mining and logging USMINE ∆ log(xt)

All Employees: Trade, Transportation & Utilities USTPU ∆ log(xt)

All Employees: Government USGOVT ∆ log(xt)

All Employees: Retail Trade USTRADE ∆ log(xt)

81



Table C.9: List of Variables Continued

Variable FRED-QD code Transformation

All Employees: Wholesale Trade USWTRADE ∆ log(xt)

All Employees: Government: Federal CES9091000001 ∆ log(xt)

All Employees: Government: State CES9092000001 ∆ log(xt)

All Employees: Government: Local CES9093000001 ∆ log(xt)

Civilian Employment CE16OV ∆ log(xt)

Civilian Labor Force CIVPART ∆xt

Civilian Unemployment Rate UNRATE ∆xt

Unemployment Rate less than 27 weeks UNRATESTx ∆xt

Unemployment Rate for more than 27 weeks UNRATELTx ∆xt

Unemployment Rate - 16 to 19 years LNS14000012 ∆xt

Unemployment Rate - 20 years and over, Men LNS14000025 ∆xt

Unemployment Rate - 20 years and over, Women LNS14000026 ∆xt

Number of Civilians Unemployed - Less Than 5 Weeks UEMPLT5 ∆ log(xt)

Number of Civilians Unemployed for 5 to 14 Weeks (Thousands UEMP5TO14 ∆ log(xt)

Number of Civilians Unemployed for 15 to 26 Weeks UEMP15T26 ∆ log(xt)

Number of Civilians Unemployed for 27 Weeks and Over UEMP27OV ∆ log(xt)

Employment Level - Part-Time for Economic Reasons, All Industries LNS12032194 ∆ log(xt)

Business Sector: Hours of All Persons HOABS ∆ log(xt)

Nonfarm Business Sector: Hours of All Persons HOANBS ∆ log(xt)

Average Weekly Hours of Production and Nonsupervisory Employees: Manufacturing AWHMAN

Average Weekly Overtime Hours of Production and Nonsupervisory Employees: Manufacturing (Hours) AWOTMAN ∆xt

Help-Wanted Index HWIx ∆ log(xt)

Housing Starts: Total: New Privately Owned Housing Units Started HOUST ∆ log(xt)

Privately Owned Housing Starts: 5-Unit Structures or More HOUST5F ∆ log(xt)

Housing Starts in Midwest Census Region HOUSTMW ∆log(xt)

Housing Starts in Northeast Census Region HOUSTNE ∆ log(xt)

Housing Starts in South Census Region HOUSTS ∆ log(xt)

Housing Starts in West Census Region HOUSTW ∆ log(xt)

Real Manufacturers’ New Orders: Durable Goods AMDMNOx ∆ log(xt)

Real Value of Manufacturers’ Unlled Orders for Durable Goods Industries AMDMUOx ∆ log(xt)

Personal Consumption Expenditures: Chain-type Price Index PCECTPI ∆2 log(xt)

Personal Consumption Expenditures Excluding Food and Energy PCEPILFE ∆2 log(xt)

Gross Domestic Product: Chain-type Price Index GDPCTPI ∆2 log(xt)

Gross Private Domestic Investment: Chain-type Price Index GPDICTPI ∆2 log(xt)

Business Sector: Implicit Price Deflator IPDBS ∆2 log(xt)

Personal consumption expenditures: Goods DGDSRG3Q086SBEA ∆2 log(xt)

Personal consumption expenditures: Durable goods DDURRG3Q086SBEA ∆2 log(xt)

Personal consumption expenditures: Services DSERRG3Q086SBEA ∆2 log(xt)

Personal consumption expenditures: Nondurable goods DNDGRG3Q086SBEA ∆2 log(xt)

Personal consumption expenditures: Services: Household consumption expenditures DHCERG3Q086SBEA ∆2 log(xt)

Personal consumption expenditures: Durable goods: Motor vehicles and parts DMOTRG3Q086SBEA ∆2 log(xt)

Personal consumption expenditures: Durable goods: Furnishings and durable household equipment DFDHRG3Q086SBEA ∆2 log(xt)

Personal consumption expenditures: Durable goods: Recreational goods and vehicles DREQRG3Q086SBEA ∆2 log(xt)

Personal consumption expenditures: Durable goods: Other durable goods DODGRG3Q086SBEA ∆2 log(xt)

Personal consumption expenditures: Nondurable goods: Food and beverages purchased for off-premises consumption DFXARG3Q086SBEA ∆2 log(xt)

Personal consumption expenditures: Nondurable goods: Clothing and footwear DCLORG3Q086SBEA ∆2 log(xt)

Personal consumption expenditures: Nondurable goods: Gasoline and other energy goods DGOERG3Q086SBEA ∆2 log(xt)

Personal consumption expenditures: Nondurable goods: Other nondurable goods DONGRG3Q086SBEA ∆2 log(xt)

Personal consumption expenditures: Services: Housing and utilities DHUTRG3Q086SBEA ∆2 log(xt)

Personal consumption expenditures: Services: Health care DHLCRG3Q086SBEA ∆2 log(xt)
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Table C.10: List of Variables Continued

Variable FRED-QD code Transformation

Personal consumption expenditures: Transportation services DTRSRG3Q086SBEA ∆2 log(xt)

Personal consumption expenditures: Recreation services DRCARG3Q086SBEA ∆2 log(xt)

Personal consumption expenditures: Services: Food services and accommodations DFSARG3Q086SBEA ∆2 log(xt)

Personal consumption expenditures: Financial services and insurance DIFSRG3Q086SBEA ∆2 log(xt)

Personal consumption expenditures: Other services DOTSRG3Q086SBEA ∆2 log(xt)

Consumer Price Index for All Urban Consumers: All Items CPIAUCSL ∆2 log(xt)

Consumer Price Index for All Urban Consumers: All Items Less Food & Energy CPILFESL ∆2 log(xt)

Producer Price Index by Commodity for Final Demand: Finished Goods WPSFD49207 ∆2 log(xt)

Producer Price Index for All Commodities PPIACO ∆2 log(xt)

Producer Price Index by Commodity for Final Demand: Personal Consumption Goods (Finished Consumer Goods) WPSFD49502 ∆2 log(xt)

Producer Price Index by Commodity for Finished Consumer Foods WPSFD4111 ∆2 log(xt)

Producer Price Index by Commodity Industrial Commodities PPIIDC ∆2 log(xt)

Producer Price Index by Commodity Intermediate Materials: Supplies & Components WPSID61 ∆2 log(xt)

Producer Price Index by Commodity for Fuels and Related Products and Power: Crude Petroleum WPU0561 ∆ log(xt)

Real Average Hourly Earnings of Production and Nonsupervisory Employees: Construction CES2000000008x ∆ log(xt)

Real Average Hourly Earnings of Production and Nonsupervisory Employees: Manufacturing CES3000000008x ∆ log(xt)

Nonfarm Business Sector: Real Compensation Per Hour COMPRNFB ∆ log(xt)

Business Sector: Real Compensation Per Hour RCPHBS ∆ log(xt)

Nonfarm Business Sector: Real Output Per Hour of All Persons OPHNFB ∆ log(xt)

Business Sector: Real Output Per Hour of All Persons OPHPBS ∆ log(xt)

Business Sector: Unit Labor Cost ULCBS ∆ log(xt)

Nonfarm Business Sector: Unit Labor Cost ULCNFB ∆ log(xt)

Nonfarm Business Sector: Unit Nonlabor Payments UNLPNBS ∆ log(xt)

Effective Federal Funds Rate FEDFUNDS ∆xt

3-Month Treasury Bill: Secondary Market Rate TB3MS ∆xt

6-Month Treasury Bill: Secondary Market Rate TB6MS ∆xt

1-Year Treasury Constant Maturity Rate GS1 ∆xt

10-Year Treasury Constant Maturity Rate GS10 ∆xt

Moody’s Seasoned Aaa Corporate Bond Yield AAA ∆xt

Moody’s Seasoned Baa Corporate Bond Yield BAA ∆xt

Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-Year Treasury Constant Maturity BAA10YM

6-Month Treasury Bill Minus 3-Month Treasury Bill, secondary market TB6M3Mx

1-Year Treasury Constant Maturity Minus 3-Month Treasury Bill, secondary market GS1TB3Mx

10-Year Treasury Constant Maturity Minus 3-Month Treasury Bill, secondary market GS10TB3Mx

Monetary Base BOGMBASEREALx ∆ log(xt)

Real M1 Money Stock M1REAL ∆ log(xt)

Real M2 Money Stock M2REAL ∆ log(xt)

Real Commercial and Industrial Loans, All Commercial Banks BUSLOANSx ∆ log(xt)

Real Consumer Loans at All Commercial Banks CONSUMERx ∆ log(xt)

Total Real Nonrevolving Credit Owned and Securitized, Outstanding NONREVSLx ∆ log(xt)

Real Real Estate Loans, All Commercial Banks REALLNx ∆ log(xt)

Total Consumer Credit Outstanding TOTALSLx ∆ log(xt)

Switzerland / U.S. Foreign Exchange Rate EXSZUSx ∆ log(xt)

Japan / U.S. Foreign Exchange Rate EXJPUSx ∆ log(xt)

U.S. / U.K. Foreign Exchange Rate EXUSUKx ∆ log(xt)

Canada / U.S. Foreign Exchange Rate EXCAUSx ∆ log(xt)

Shares of gross domestic product: Exports of goods and services B020RE1Q156NBEA ∆xt

Shares of gross domestic product: Imports of goods and services B021RE1Q156NBEA ∆xt

Industrial Production: Manufacturing (SIC) IPMANSICS ∆ log(xt)

Industrial Production: Residential Utilities IPB51222S ∆ log(xt)
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Table C.11: List of Variables Continued

Variable FRED-QD code Transformation

Industrial Production: Fuels IPFUELS ∆ log(xt)

Average (Mean) Duration of Unemployment UEMPMEAN ∆xt

Average Weekly Hours of Production and Nonsupervisory Employees: Goods-Producing CES0600000007 ∆xt

Total Reserves of Depository Institutions TOTRESNS ∆2 log(xt)

Reserves Of Depository Institutions, Nonborrowed NONBORRES ∆(xt/xt−1 − 1.0)

5-Year Treasury Constant Maturity Rate GS5 ∆xt

3-Month Treasury Constant Maturity Minus Federal Funds Rate TB3SMFFM

5-Year Treasury Constant Maturity Minus Federal Funds Rate T5YFFM

Moody’s Seasoned Aaa Corporate Bond Minus Federal Funds Rate AAAFFM

Producer Price Index: Crude Materials for Further Processing WPSID62 ∆2 log(xt)

Producer Price Index: Commodities: Metals and metal products: Primary nonferrous metals PPICMM ∆2 log(xt)

Consumer Price Index for All Urban Consumers: Apparel CPIAPPSL ∆2 log(xt)

Consumer Price Index for All Urban Consumers: Transportation CPITRNSL ∆2 log(xt)

Consumer Price Index for All Urban Consumers: Medical Care CPIMEDSL ∆2 log(xt)

Consumer Price Index for All Urban Consumers: Commodities CUSR0000SAC ∆2 log(xt)

Consumer Price Index for All Urban Consumers: Durables CUSR0000SAD ∆2 log(xt)

Consumer Price Index for All Urban Consumers: Services CUSR0000SAS ∆2 log(xt)

Consumer Price Index for All Urban Consumers: All Items Less Food CPIULFSL ∆2 log(xt)

Consumer Price Index for All Urban Consumers: All items less shelter CUSR0000SA0L2 ∆2 log(xt)

Consumer Price Index for All Urban Consumers: All items less medical CUSR0000SA0L5 ∆2 log(xt)

Average Hourly Earnings of Production and Nonsupervisory Employees: Goods-Producing CES0600000008 ∆2 log(xt)

Consumer Motor Vehicle Loans Outstanding Owned by Finance Companies DTCOLNVHFNM ∆2 log(xt)

Total Consumer Loans and Leases Outstanding Owned and Securitized by Finance Companies DTCTHFNM ∆2 log(xt)

Securities in Bank Credit at All Commercial Banks INVEST ∆2 log(xt)

Ratio of Help Wanted/No. Unemployed HWIURATIOx ∆xt

Total Business Inventories BUSINVx ∆ log(xt)

Total Business: Inventories to Sales Ratio ISRATIOx ∆xt

Nonrevolving consumer credit to Personal Income CONSPIx ∆xt

Nikkei Stock Average NIKKEI225 ∆ log(xt)

S&P’s Common Stock Price Index: Composite S&P 500 ∆ log(xt)

S&P’s Common Stock Price Index: Industrials S&P: indust ∆ log(xt)
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D Online Appendix: Additional Results

This appendix reports additional simulation and empirical results. First, Figure D.7

compares the posterior standard deviations of the VAR coefficients (A) from the VB

and MCMC methods using the FRED-QD dataset (n = 5, 10, 50 variables are randomly

selected); Figure D.8 reports the corresponding comparison for the impact matrix coeffi-

cients (B0). These figures show that even though there are instances of slight over- and

under-estimation, the two methods generally provide similar estimates.
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Figure D.7: Scatter plots of the estimates of the VAR coefficients from VB and MCMC.
The dashed red line is the 45-degree line.
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Figure D.8: Scatter plots of the estimates of the impact matrix coefficients from VB and
MCMC. The dashed red line is the 45-degree line.
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Next, Figure D.9 reports the posterior standard deviations of the stochastic volatility

using VB and MCMC for 5 selected macroeconomic variables. Again, the estimates from

the VB track those from the MCMC rather closely.
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Figure D.9: Estimates of the stochastic volatility from VB (blue line) and MCMC (red
line).

In what follows, we provide additional results from the application. In particular, Figure

D.10 shows the outlier estimates across time for the 16 macroeconomic series. Figure D.11
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shows the outlier-adjusted volatility for the 16 macroeconomic series. Similarly, Figure

D.12 shows the estimates for Q2 across time for the 16 macroeconomic series. Figure

D.13 shows the adjusted volatility for the 16 macroeconomic series.

Figure D.10: Outlier estimates for the 16 macroeconomic series from March 1960 to
March 2021.
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Figure D.11: Volatility estimates for the 16 macroeconomic series using VAR-SVO. Specif-
ically, it is given by the square root of diagonal element of Σ̂t = B̂−1

0 ÔtD̂tÔ
′
t(B̂

−1
0 )′

.
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Figure D.12: Estimates forQ2 for the 16 macroeconomic series from March 1960 to March
2021.
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Figure D.13: Volatility estimates for the 16 macroeconomic series using VAR-SVt. Specif-
ically, it is given by the square root of diagonal element of Σ̂t = B̂−1

0 Q̂tD̂tQ̂
′
t(B̂

−1
0 )′

.
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